勾股定理

gōu gǔ dìng lǐ
  • the Pythagorean theorem;the Pythagorean proposition
勾股定理勾股定理
勾股定理 [gōu gǔ dìng lǐ]
  • [Pythagorean theorem] 《周髀算经》记载:西周初年商高提出的勾三股四弦五。这是勾股定理的一个特例。勾股定理就是直角三角形斜边上的正方形面积,等于两直角边上的正方形面积之和。中国古代称两直角边为勾和股,斜边为弦。勾三股四弦五就是:勾三的平方九,加股四的平方十六,等于弦五的平方二十五。说明我国很早就掌握勾股定理,西方的希腊到公元前六世纪的毕达哥拉斯时,才发现这一定理

勾股定理[gōu gǔ dìng lǐ]
  1. 勾股定理(PythagoreanTheorem)告诉我们边长为3、4和5的三角形是直角三角形,因此可以使用边长3、4和5来简单地测试。

    The Pythagorean Theorem tells us that a3-4-5 triangle is a right triangle , so we can simply test for sides of3,4 , and5 .

  2. n维空间中勾股定理的一个证明

    A proof on the Pythagorean theorem in n-dimension vector space

  3. 利用PowerPoint的VBA编程功能制作勾股定理的探索与验证交互性课件

    Using VBA Programming of PowerPoint to Make Exploration-and-Verification Interactive Courseware of Pythagorean Theorem

  4. 在西方,一般都认为:希腊数学家半达哥拉斯(Pythagoras)最早证明了勾股定理,因而都习惯地称这个定理为毕达哥拉斯定理。但这一看法历史上并没有可靠的依据。

    It is generally considered that the Greece mathematician , Pythagoras , first proved the Pythagorean theorem , but this is not reliable .

  5. 例如,R2的平方、二维向量的长度、三角不等式等都存在勾股定理。

    For instance , it 's also the square of the Euclidean norm on R2 , the length of a two-dimensional vector , a part of the triangle inequality , and quite a bit more .

  6. 本文讨论了Menger概率内积空间的线性拓扑结构,建立了空间上较为一般的收敛定理,勾股定理及正交投影定理等。

    In this paper the linearly topological structure of Menger Probabilistic inner product space is discussed . In virtue of these , some more general convergence theorems , Pythagorean theorem , and the orthogonal projective theorem are established .

  7. 线性流型上的变换函数Φ及广义的勾股定理

    The Transformation and General Pythagoras ' Theorem on the Linear Manifold

  8. 勾股定理最早证明新考

    One New Study for First Proving of the " Pythagorean Theorem "

  9. 用玻璃板制作勾股定理演示器

    Make the Demonstrating Device of the Pythagorean Theorem with the Glass Plate

  10. 勾股定理与中国古代数学

    Legs of a Triangle Theorem and Chinese Ancient Mathematics

  11. 对勾股定理的研究,不同民族在起始时间上不同。

    Different nations step into the reacher about The Pythagorean at different times .

  12. 面积与勾股定理的证明

    Area and Proof of Pythagorean Theorem ~ α

  13. 勾股定理(即毕达格拉斯定理)的全部整数解表达式有无穷多种,目前常用的勾股定理全部整数解表达式,不过是其中最简通解式而已。

    The general expressions in integer of the Pythagorean Theorem have infinite equivalent forms .

  14. 立体几何的余弦定理和勾股定理

    Cosine theorem and Pythagorean theorem in space

  15. 关于n维欧氏空间上的广义勾股定理

    Generalized Pythagorean Theorem in n-dimensional Euclidean Space

  16. 多元文化下的勾股定理

    View of Multi-culture on Right Angles Theorem

  17. 甚至相出了一个自己的方法来证明勾股定理。

    He even came up on his own with a way to prove the Pythagorean theory .

  18. 介绍了用玻璃板制作勾股定理演示器的全过程。

    This article introduces the whole course of the demonstrating device of the Pythagorean theorem with the glass plate .

  19. 本文论述了用分割面积来证明勾股定理的多种方法。

    This paper discusses mang methods to prove Legs of a triangle and right angles theorem with cut area .

  20. 本文提供的勾股定理证明的教学案例就是一次探究性教学的应用。

    The teaching case that the Pythagorean theorem that this text offers proves is the application of probing into teaching .

  21. 通过融合中西两种数学思想方法,给出了“勾股定理”的四种新的证明方法。

    By Combining both the Chines and western mathematical thinking , four new proof methods of Pythagorean theorem were demonstrated .

  22. 有关勾股定理、射影定理的研究性论题高考物理实验试题设计趋势分析

    Researched Proposition on Pythagorean Theorem and Projection Theorem Analyzing the trends of proposition design on physical experiment in national college-entrance examinations

  23. 勾股定理不仅是一些数学定理的基础,在生产和生活中的应用也很广泛。

    The Pythagorean is not only the basis of some math theorems but also be widely used in life and production .

  24. 活了这些年,我还从来没有介入过一场谈判勾股定理的鸡尾酒会。

    In all my years I have never once attended a cocktail party where the conversation turned to the Pythagorean theorem .

  25. 即使承认这一看法,西方最早给出勾股定理证明的时间也不会早于公元前585年,即相传毕达哥拉斯出生的那一年。

    Even if admit this view , in the western countries the time of first proof of the Pythagoras theorem is not probably early than epoch ago 585 year .

  26. 如果我们的前辈以我们有些人试着理解的方式来理解这段圣训,他们绝对不会出现发明运算法则和揭示勾股定理的伟大学者。

    If our predecessors understood the hadith the way some of us try to understand it , they would have never produced the great scholars who invented algorithms and developed trigonometry .

  27. 我们都学习过,欧几里得几何中对勾股定理的证明方法,从繁杂的欧氏几何的公理开始,邦,邦邦,邦邦,邦邦。

    And we learned how to prove the Pythagorean Theorem in Euclidean geometry , starting with the various axioms in Euclidean geometry , ba , ba-ba , ba-ba , ba-ba , ba bum .

  28. 本文通过研究勾股定理的的起源和历史,根据古代发现优先权的确立原则与判定标准确定了古希腊和古代中国同时发现了勾股定理这一结论。

    In this paper , firstly we assure that Ancient China and Ancient Greece found out the theorem simultaneously , according to investigating its origin and history , the principle and Ancient Found Priority judging criteria .

  29. 本文目的在于论述变换函数中φ,外延勾股定理用于运算任意三角形边的平方长并研究其几何特征的实际应用问题。

    The primary aim of this paper is to describe the transformation function [ 1 ] , to extend the conclusion of Pythagoras'theorem for " squared length " of any triangle and to study some geometrical significance of its application .

  30. 勾股定理是世界上最伟大的定理之一,其简单表述为:直角三角形两直角边的平方和等于斜边的平方。

    The Pythagorean is one of the greatest theorems we can express it simply that if the triangle is an right triangle , then square its two angled-sides and plus them , the summation equals to the square of the hypotenuse .