多项式时间

  • 网络Polynomial time;polynomial-time
多项式时间多项式时间
  1. Few算子和多项式时间概率算法PP的能力

    On the power of probabilistic polynomial time and few operator

  2. 第二个算法需要花费输入集合的多项式时间倍,此算法有效地计算来自XML关键字的函数依赖最小覆盖的算法。

    The second algorithm takes polynomial time in the size of input . This algorithm effectively finds a minimum cover for FDs propagated from XML keys .

  3. NP完全问题多项式时间算法研究

    Study on the Polynomial-time Algorithms of NP Complete Problems

  4. 本文讨论问题T1的几个多项式时间的可解情形。

    Time is * This paper deals with the cases solvable for the problem T1 .

  5. 我们证明了:MAX~+(k)中公式的改名问题在多项式时间内可以判定,并给出相应的算法。

    The proof is based on the splitting technology and the fact that the complexities of renamings of formulas in MAX ( 1 ) are polynomial time .

  6. 一个SNP问题的多项式时间算法

    A polynomial algorithm for a SNP problem

  7. 本文证明这两种系统可求解著名的NP完全问题,可以在多项式时间内求解给定规模的NP完全问题的所有算例。

    This dissertation proved that these two systems can solve all instances of NP-complete problem in a polynomial time .

  8. 最后给出了一个求FD集最优覆盖的多项式时间算法。

    Finally , a polynomial time algorithm for solving an optimal cover of FD set is given .

  9. 这两类算法是在ML算法基础上放松约束条件,将问题转化为可在多项式时间内解决的凸优化问题。

    These two algorithms relax the constraints of ML algorithm and transform it into a convex problem which can be efficiently solved with a polynomial time .

  10. 网络优化问题是一类特殊的组合优化问题,很多问题找不到求最优解的多项式时间算法,属于NP困难问题;

    Network optimization is special problem of combinatorial optimization . Many questions belong to non-determin-istic polynomial problems ( NP ) .

  11. Steiner树作为组播的经典NP问题,无法在多项式时间内找到最优解。

    Steiner tree multicast as a classic NP-hard problem cannot find the optimal solution in polynomial time .

  12. 由于图的着色问题属于NP完全问题,不可能在多项式时间内得到最优解。

    Because graph coloring problem belongs to NP complete problems , it can not get the optimal solution in polynomial time .

  13. 阐述了多任务的资源调度问题的形式化定义、复杂性和可近似性难度分析,证明了该问题是NP完全的且是强NP完全的,不存在任何常数近似比的多项式时间近似算法。

    It was concluded that the problem is strong NP complete without any approximate algorithms that had constant polynomial time approximate ratio .

  14. 最后,利用双层规划的对偶理论,给出求解OEM业务最优策略的一种多项式时间算法。

    Finally a polynomial-time algorithm for the optimal strategy of OEM is gotten by using dual theory of bilevel programming .

  15. 在考虑子任务间逻辑依赖关系和转移成本的情况下,探讨了针对这类复杂任务结构的服务Agent联盟形成问题,并且提出了一种基于动态规划的多项式时间算法。

    We consider the Agent Coalition Formation Problem with logical dependency and transfer cost . And , we propose an algorithm with polynomial time complexity on the basis of Dynamic Planning , to solve this problem .

  16. 后者的计算时间复杂性远远低于2N(N为图的顶点数),已接近于多项式时间复杂性。

    The computational complexity of the improved algorithm approaches polynomial complexity , much less than 2 N ( N is the vertex number of a graph ) .

  17. 例如Shor的算法能在多项式时间内找到一个N位函数的周期。

    Shor 's algorithm , for example , is able to find the period of a function of N bits in polynomial time .

  18. SAT问题是NP完全问题,从理论上说,SAT问题不能在多项式时间内解决,它超出了现代计算机的能力。

    SAT problem belongs to the NP class , that is , theoretically it can 't be solved in polynomial time and solving it exceeds the capability of modern computer .

  19. 通过给出具体的确定型图林机,证明了SBE的可满足性(SAT)问题在多项式时间内可解。

    It is proved that the SEE ' satisfiability is solvable in the polynomial time by means of giving a concrete deterministic Turing Machine .

  20. 20世纪70年代至今的计算复杂性理论表明,对于NP难度问题可能根本就不存在多项式时间复杂度的求解算法,于是人们使用各种启发式算法求此类问题的近似解。

    Investigations from the 1970s to now , show that for NP hard problems , there possibly does not exist an algorithm is of Polynomial time complexity .

  21. 车间调度是一类典型的NP-hard问题,已被证明在多项式时间内得不到最优值。

    Shop scheduling problem is typically NP-hard , which means that it is impossible to find the global optimum in polynomial complexity .

  22. Shamir多项式时间算法的推广

    The Generalization of Shamir Polynomial Time Algorithm

  23. 在QoS路由算法研究过程中,形成了三类重要子问题:约束最短路径问题(RSP);它是NP-完全的,并有许多具有多项式时间和伪多项式时间的启发式求解算法。

    A basic problem in QoS routing is the restricted shortest path problem ( RSP ), which is known to be non-polynomial ( NP ) .

  24. 本文首先给出了该问题的数学模型,并证明了其是NP-hard问题,因此提出了一个多项式时间的启发式算法。

    This dissertation gives a mathematical model of the problem and proves its NP-hardness , and therefore proposes a polynomial time heuristic algorithm .

  25. 我们将文献中基于邻域搜索思想的2-OPT操作推广为k,k-交换操作,利用此操作,给出了一个多项式时间近似方案,从而大大改进了文献中的结果。

    With new operation , we present a polynomial time approximation scheme for the considered problem , which greatly improves the known result .

  26. 可满足性问题是六个基本的NP完全问题之一,其他NP完全问题均可在多项式时间内转换为可满足性问题。

    The Satisfiability problem ( SAT ) is one of the six basic NP-complete problems . Other NP-complete problems could be transformed into the Satisfiability problem in polynomial time .

  27. 但作业车间调度问题是非常典型的NP-hard问题,迄今为止仍未找到可以精确求得最优解的多项式时间算法。

    However , cause the job-shop scheduling problem is a typical NP-hard problem , optimal solutions can still not be precisely obtained by far .

  28. 给出了一个多项式时间近似方案(PTAS)。

    A polynomial time approximation scheme ( PTAS ) for this problem is presented .

  29. 本文提出了无向图(k,m)最优划分的一个近似算法,证明了这是一个产生近似最优解的多项式时间算法。

    In this paper we present an approximation algorithm for ( k , m ) optimal partition problem on an undirected graph . We show that this approximation algorithm which produces a near optimal solution runs in polynomial time .

  30. 异构无线网络中取得max-min公平带宽分配是一个NP-hard问题,设计了多项式时间算法来获得次优的近似解。

    The max-min bandwidth fairness allocation in HWNs is NP-hard problem , so an approximation algorithm of polynomial-time is designed to obtain suboptimal result .