层错能

  • 网络STACKING FAULT ENERGY
层错能层错能
  1. 采用改进分析型嵌入原子法(MAEAM)计算了Al-Ni、Cu-Ag、Pb-Ag、Cu-Pb等4种固溶体合金在全成分内的合金层错能;

    The alloy stacking fault energy of four solid solution alloy A1-Nk Cu-Ag > Pb-Ag > Cu-Pb in all compositions have been calculated by using the modified analytical embedded atom method ( MAEAM ) .

  2. 介绍了孪晶诱发相变的微观机理,层错能对TWIP效应的影响以及显微组织对钢的力学性能的影响。

    Mechanism of the twinning induced transformation , impact of stacking fault energy on TWIP effect and impact of microstructure on mechanical properties of the steel were introduced .

  3. 低层错能钢中ε马氏体的X射线分析

    X-Ray Analyses of ε - Martensite in Low SFE Steel

  4. 用X射线方法测定α黄铜的层错能

    Measurement of Stacking Fault Energy in α - Brass by the X-Ray Method

  5. W、Co对Ni合金层错能影响的热力学计算

    Thermodynamic calculation on the influence of W and Co on the stacking fault energy of Ni alloys

  6. Si含量对Fe-Mn-Si合金层错能的影响

    Effect of silicon content on the stacking fault energy in Fe-Mn-Si alloys

  7. 这主要是由于易拉罐用铝材中Mn、Mg等合金元素降低了层错能,使得位错交滑移能力降低,更有利于产生动态再结晶。

    , make the fault energy decrease and the cross-slip ability of dislocation decrease , which is favorable to dynamic recrystallization .

  8. 本实验采用X射线透射织构方法,测定了Nb对一种Ni基高温合金基体堆垛层错能的影响。

    The effect of Nb on the stacking-fault energy in a Ni-base superalloy was measured by transmission X-ray texture method .

  9. Fe-Mn合金层错能的嵌入原子法计算

    Calculation of the Stacking Fault Energies of Fe Mn Alloys by Embedded Atom Method

  10. 运用置换原子计算层错能的热力学模型,计算了NiW、NiCo合金的层错能。

    The stacking fault energy ( SFE ) in Ni-W , Ni-Co alloys were calculated by means of the thermodynamic model of the substitutional atoms .

  11. 造成这些变化的主要原因有:随AI含量的增加,小角度晶界所占的比例增大,合金的层错能升高,交滑移容易进行。

    The major cause for these changes was that the percentage for LAB increased and cross slip became easier as a result of decreasing stacking energy with increasing Al contents .

  12. 合金中铜原子的偏聚降低了基体的层错能,从而为T1相依赖扩散层错形核提供了有利条件。

    For the studied alloy , the aggregated copper atoms reduced stacking faulting energy of the Al matrix favourable to the nucleation and growth of T1 phase .

  13. 运用嵌入原子法(EAM)计算了Fe-Mn合金层错能(SFE)。

    Embedded atom method ( EAM ) was introduced to calculate the stacking fault energies ( SFE ) of Fe Mn alloys .

  14. 锰元素对TWIP钢层错能和变形机制的影响

    The Influence of Manganese on the Stacking Fault Energy and Deformation Mechanisms of the TWIP Steel

  15. 其原因是Sr的加入引起基体晶格变化,降低铝合金板材的层错能,阻碍了交滑移的进行,造成织构类型的转变。

    The reason is that the addition of Sr into alloy affects the matrix lattice , reduces the energy of the fault layer , hinders the cross slide and changes the types of textures .

  16. 根据层错能的热力学模型,计算了三种Fe-Mn-Si合金的内禀层错能。

    The intrinsic stacking fault energy of three Fe-Mn-Si alloys was calculated ac-cording to the thermodynamic model of stacking fault energy .

  17. 以新一代溶液模型考察了合金元素对Fe-Mn-Si基合金层错能的影响,并预测了Fe-Mn-Si合金面心立方(fcc)→密排六方(hcp)马氏体的相变温度。

    The effects of alloying elements on the stacking fault energy in Fe-Mn-Si based shape memory alloys were investigated by a new generation solution model .

  18. 讨论了不稳定层错能和位错芯宽度以及Peierls应力之间的关系。

    The results show that the unstable stacking fault energy is the key parameter controlling the core width and Peierls stress .

  19. 合金元素主要通过对奥氏体层错能和屈服强度的作用而影响了α、ε马氏体相变及相变临界点Ms、Mεs,也决定了奥氏体钢的形变断裂特性。

    Alloying elements influence a and ε martensite phase transformation , and Ms and Mes , especially through their effect on stacking-fault energy and yield strength of austenite . It is the effect that determines the characteristics of deformation and fracture of austenitic steels .

  20. 最后,本论文计算了NiAl金属间化合物的111反相畴界能、Peierls应力、不稳定堆垛层错能、塑性判据、解理能等。

    Finally , 111 antiphase boundary energy , the Peierls stress , the unstable stacking fault energy , the cleavage energy and the plasticity criterion of NiAl are calculated .

  21. 高层错能FCC材料塑性变形主要靠晶体滑移,而对于低层错能材料,除晶体滑移之外,在维持正常塑性流动方面,变形孪晶也起重要作用。

    The face-centered cubic ( f.c.c. ) crystals with high stacking fault energies deform predominantly by crystallographic slip . For the crystals with low stacking fault energies , in addition to crystallographic slip , deformation twinning also plays an important role in maintaining generalized plastic flow .

  22. 本文研究了Fe-Mn-Si、Fe-Mn-Si-Cr-Ni及Fe-Mn-Si-C形状记忆合金化学成分、热处理工艺、显微组织结构、层错能和形状记忆效应的关系;

    The influence of chemical component , heat treatment process , microstructure and stacking fault energy on shape memory effect of Fe-Mn-Si , Fe-Mn-Si-Cr-Ni and Fe-Mn-Si-C alloys was investigated .

  23. 采用透射电镜动态拉伸、原位观察研究了低层错能合金H68黄铜断裂的微观过程。

    The micro process of crack initiation and propagation in H68 brass with low stock fault energy was observed by in situ tensile test in TEM .

  24. 应用Hirsch等人关于高层错能基体/低层错能共格析出颗粒的强化理论,可以对此现象作出很好解释,并由此指出一种值得重视的有效高温强化机制。

    The theory proposed by Hirsch et al about strengthening mechanism of low SFE precipitates in high SFE matrix could be used to explain this phenomenon , therefore , an effective and meritorious high temperature strengthening mechanism was suggested .

  25. 本文利用热力学方法计算了Ni-Al-W和Ni-Al-Co合金的层错能,研究了W、Co、Al对Ni基合金层错能的影响;

    The stacking fault energy ( SFE ) of Ni-Al-W and Ni-Al-Co alloys have been calculated by means of the thermodynamic method , an investigation have been made into the effect of the elements Al , W , Co on the stacking fault energy ( SFE ) of Ni-base alloys .

  26. 结果表明:元素Al可明显降低Ni-W、Ni-Co合金的层错能,元素W、Co均提高Ni-Al合金的层错能,随温度提高,Ni-Al-W、Ni-Al-Co合金的层错能增加。

    The results show that the element Al decreases the stacking fault energy ( SFE ) of Ni-W and Ni-Co alloys , the elements W and Co may enhance the SFE of Ni-Al alloy . The SFE of Ni-Al-W and Ni-Al-Co alloys are increased with the temperature .

  27. 采用缀加平面波加局域轨道方法和广义梯度近似对立方C15结构的ZrCr2Laves相金属间化合物的弹性性质,包括弹性常数和弹性模量,以及层错能进行理论计算。

    First-principles calculations were performed to investigate the elastic constants , elastic moduli , stacking fault energies , and dislocation dissociations of C15 ZrCr_2 Laves phase , based on the method of augmented plane waves plus local orbitals with generalized gradient approximation .

  28. 在应变速率为10s-1时,真应力-真应变曲线出现明显的波动,说明尽管玻璃/铝基复合材料的层错能比较高,仍可发生动态再结晶。

    At the strain rate of 10s-1 the true stress-strain curves exhibit oscillations apparently , this indicate that dynamic recrystallization can be happen , though there is the high stacking fault energy for Glass / Aluminium Metal Matrix Composites . 3 .

  29. 铌对镍基高温合金堆垛层错能的影响

    Effect of Nb on stacking - fault energy in Ni-base Superalloy

  30. Ni-Al-Ta/Mo合金的层错能及影响因素

    Stacking Fault Energy and Effect Factors of Ni-Al-Ta / Mo Alloys