控制方程

  • 网络Governing equation;Control equation
控制方程控制方程
  1. 基于FEM和BEM耦合理论,建立面素单元基于力边界条件的控制方程;

    The governing equation of patch element is built up for Robin condition based on the theory of FEM-BEM coupling .

  2. 用ADI法数值求解控制方程.这是演化的方向。

    The alternative direction implicit method is used to solve the governing equation .

  3. 数字PID控制方程的参数在线Fuzzy自校正方法研究

    A study of the on-line fuzzy self-correction method for digital PID control equation parameters

  4. 控制方程采用基于H型网格的有限体积中心格式进行空间离散。

    The governing equations are spatially discrete in the cell-vertex finite volume scheme on a simple H mesh .

  5. 采用kε双方程模型作为控制方程进行了数值求解,与实验结果对照表明,数值计算所建的物理和数学模型及简化措施是合理的。

    Compared with test result , it is proved that established physical and mathematical models are reasonable .

  6. 采用有限容积法在交错网格上对流动控制方程离散,然后采用SIMPLE算法求解。

    The finite volume method is used to discrete the flow controling equations on staggered grid and the SIMPLE algorithm is adopted to solve the equations .

  7. 针对ER型动力元件,阐述了含ER技术的机械系统控制方程的建立方法,运用控制理论建立了其状态方程。

    This paper introduces foundation of control equations of ERF power element based on control theory .

  8. 本文从一般管流流动的控制方程出发,运用SIMPLE算法对旋转流进入突扩或渐张管道作了具体计算。

    The general governing equations of turbulent flow in a pipe are first simplified un-der low speed and steady conditions , and then solved by SIMPLE approach in this paper .

  9. 用Galerkin方法求解控制方程。

    The governing equations are solved by Galerkin method .

  10. CFD的工作步骤中需要建立控制方程和设立边界条件。

    The working procedure of CFD needs to establish the control equations and to set boundary conditions .

  11. 基于分离后的TE、TM模的控制方程,可以得到二维周期介质中纵向模式的本征值及对应的本征矢量。

    The eigenvalues and corresponding eigenvectors of longitudinal TE or TM modes in periodic dielectric are obtained .

  12. 介绍了FLAC~(2D)中水气两相流(Two-phaseflow)的基本控制方程和数值计算公式,以及与应力耦合的计算公式。

    The paper also introduced the basic controlling equation , numerical computation formula and the stress-coupling formula of the Two-phase flow in FLAC ~ 2D .

  13. 首先,推导了DC侧APF的单周控制方程,进行了仿真分析,并对其补偿性能与负载大小之间的关系进行了仿真研究。

    First , the control equation of DC side APF is deduced and some features of DC side APF are simulated .

  14. 几何非线性采用总体拉格朗日列式法,在此基础上引入材料非线性的影响推导了初始几何缺陷悬链线拱的双重非线性稳定承载力控制方程。用Matlab编程进行了计算分析。

    Geometric nonlinearity adopt total lagrangian formulation , deduce double nonlinearity stability control equations of initial geometrical imperfections catenary arch , with corresponding programs complied in Matlab .

  15. Galerkin方法得到以位移形式表达的动力屈曲控制方程,通过有限差分方法求解,并由类似B-R准则方法判断动力屈曲是否发生;

    The governing equations expressed as displacement forms of dynamic buckling are obtained by Galerkin method . The equations are solved by a finite difference method .

  16. 在分析负载的机械特性、步进电动机的矩频特性、系统的运动方程式的基础上,建立频率控制方程,并运用MATLAB软件绘制控制曲线。

    Frequency control equation is established based on the analysis of load mechanical characteristic , stepper motor torque-frequency characteristic , systemic motion equation . Frequency control curve is drawn by MATLAB software .

  17. 虹吸式出水流道三维流动模拟的控制方程为雷诺平均Navier-Stokes方程,并以紊流模型使方程组闭合。

    Control equations include Reynolds Navier-Stokes equation and turbulent model . The computation of near-wall flow has been conducted by wall-function .

  18. 本文以Timoshenko-Mindlin假设及Hamilton原理为基础,建立了中厚板的非线性运动控制方程。

    Based on Timoshenko-Mindlin kinematic hypotheses and Hamilton 's principle , the governing motion equations for geometrically nonlinear middle-thick rectangular plate are derived .

  19. 介绍了离散元(DEM)方法的基本原理、颗粒运动控制方程和颗粒相互作用力的数学模型。

    The basic principles of DEM ( discrete element model ), and the equations of particle motion and models of particle particle interaction are introduced .

  20. 高雷诺数流动的控制方程体系和扩散抛物化Navier-Stokes方程组的意义和用途

    Significance and use of basic equation system governing high Reynolds ( re ) number flows and diffusion-parabolized navier-stokes ( dpns ) equations

  21. 对该燃气暖风机流场的模拟计算的数值方法进行了讨论,详细介绍控制方程、湍流模型、辐射模型和网格生成方法、控制方程的离散方法、SIMPLE算法等内容。

    The numerical simulation method of gas-fired warm air heater paper is also discussed , and control equations , turbulent models , radiation models , method of grid generation , dispersing method of control equations , SIMPLE algorithm are introduced detailedly .

  22. 采用Kane方程,建立了含耦合的几何及惯性非线性项的定轴转动与轴向基础激励联合作用下柔性梁的非线性动力学控制方程组。

    Nonlinear dynamic modeling of flexible beams under rotation and axially parametric joint excitation is presented in this paper .

  23. 本文基于Biot动力控制方程,深入研究了条形基础的竖向振动特性。

    Based on the Biot 's dynamic equations , the vertical vibration analysis of strip foundation are studied in this paper .

  24. 假定流体为粘性不可压缩流体,采用ALE(ArbitraryLagrangian-Eulerian)方法来描述流体流动的动力学控制方程。

    Viscous incompressible fluid is assumed in this paper and ALE ( Arbitrary Lagrangian-Eulerian ) method is used to describe Fluid dynamic equation .

  25. 应用了由连续性方程、雷诺应力平均Navier-Stokes方程、紊动能k方程和紊动能耗散ε方程组成的封闭方程组作为泵段及泵装置内部三维湍流流动的控制方程。

    Control equations of numerical simulation include continuity equation and Reynolds Navier-Stokes equation with standard k ? ε turbulent model . The Finite-Volume-Method is utilized for discretization of the control equations .

  26. 本文给出了连续理论悬索房顶在垂直地震力作用下具有Rayleigh阻尼的非线性控制方程组的各阶渐近解。

    In this study , we obtained the asymptotic solutions for the first two orders of the nonlinear governing equations of cable-suspended roof under vertical seismic with Rayleigh damping .

  27. 建立了气固两相流的控制方程和封闭方程;介绍了数值模型的建立、网格划分、边界条件和初始条件的设定;采用SIMPLE算法对射流技术进行压力和速度耦合。

    The control equations and the closed equations of gas-solid two-phase flow are established . The setting of the numerical model , meshing , boundary conditions and initial conditions are described . Using SIMPLE algorithm to establish pressure and velocity coupling of jet technique .

  28. 采用Galerkin法对偏微分方程进行离散,得到包含外激励和参数激励的二自由度控制方程。

    The Galerkin approach is employed to deduce a two-degree-of-freedom nonlinear system under the combination of the parametric and external excitations from the governing partial differential equations .

  29. 气相控制方程组用欧拉坐标系下的Navierstokes方程组描述,液相控制方程组在Lagrangian坐标系下进行描述。

    The gas controlling Navier Stokes equations are described under the Euler coordinate . The liquid phase controlling equations are described under the Lagrangian coordinate .

  30. 对单向纤维增强复合材料粘弹性问题的控制方程进行Laplace变换,在像空间中利用均匀化理论建立宏观松弛模量的Laplace变换与微结构描述参数以及变换参数间的关系。

    After Laplace-transforming the governing equation of the viscoelastic problem of unidirectional fiber reinforced composite materials , the relaxation modulus in Laplace transformed space is obtained with homogenization method .