泛函微分方程
- 网络functional differential equations;rfde;NFDE;FDE
-
讨论了一类非线性抛物型时滞偏微分方程系统的振动性,利用空间平均法和泛函微分方程的某些结果,获得了该类系统在第1类边值条件下所有解振动的若干充分条件。
The oscillation for a class of systems of nonlinear parabolic delay partial differential equations is studied . Some sufficient conditions are obtained for oscillation of all solutions of the systems under first boundary value conditions via the method of spatial average and some results of the functional differential equations .
-
偶数阶拟线性偏泛函微分方程系统有关边值问题的振动性
Oscillation of systems of even order quasilinear partial functional differential equations about boundary value problems
-
n阶泛函微分方程的渐近性
Asymptotic Behavior of n th Order Functional Differential Equations
-
Logistic型时滞泛函微分方程解的渐近性
Asymptotic Behavior of Solutions of Logistic Type Functional Differential Equations with Forcing Term
-
|q|≤1中立型时滞泛函微分方程的最大和最小解
Maximal and minimal solutions of neutral delay functional differential equation with | q | ≤ 1
-
作者对一类N阶中立型泛函微分方程给出了新的区间振动准则。
New sufficient conditions are obtained for a class of n th order neutral differential equations based on a new interval criterion for oscillation .
-
Volterra泛函微分方程线性θ-方法的散逸性
Dissipativity of linear θ - methods for Volterra functional differential equations
-
抽象空间中非线性Volterra泛函微分方程的数值稳定性分析
Numerical Stability Analysis for Nonlinear Volterra Functional Differential Equations in Abstract Spaces
-
本文用两个李雅普诺夫V函数对泛函微分方程建立了完全渐近稳定性的一类判别条件。
In this paper , we obtain sufficient conditions of total asymptotic stability of functional differential equations , by using two Liapunov functional v.
-
该文利用重合度理论,研究多变时滞n阶非线性中立型泛函微分方程周期解存在性,给出这类方程存在周期解的一个较一般的判别法与四个充分性定理。
In this paper , the authors give four sufficient conditions for the existence of periodic solutions of n-th order nonlinear neutral differential equations with multiple variable lags .
-
中立型泛函微分方程的Lipschitz一致渐近稳定性和周期解
Uniformly Asymptotical Lipschitz Stability and Periodic Solution for Neutral Functional Differential Equation
-
无穷时滞中立型扰动泛函微分方程的Lipschitz一致稳定性
Lipschitz consistent stability in neutral functional differential equation with infinite delay and perturbation
-
一类Duffing型泛函微分方程周期解的存在与唯一性
Existence and Uniqueness of Periodic Solutions for a Kind of Duffing Functional Differential Equations
-
Lurie型的中立型泛函微分方程的绝对稳定性
Absolute stability of a neutral functional differential equation of Lurie Type
-
本文考虑了一类描述传染病传播规律的泛函微分方程模型,即一类带有时滞的SIR模型。
In this paper , a function differential equation model which describe the transmission rules of the infectious diseases is investigated , that is , a delayed SIR model .
-
随机中立型泛函微分方程的Lasalle定理
Lasalle - type theorems for neutral stochastic functional differential equations
-
该文运用已有的泛函微分方程边值问题解的存在性结果,在Banach空间中,讨论了无穷区间上的一阶泛函微分方程边值问题和二阶泛函微分方程边值问题解的存在性;
In this paper , we discuss the existence of solutions to boundary value problems of first and second order differential functional equations on infinity interval in Banach space .
-
通过Robin特征值的方法获得了带连续分布偏差变元的抛物泛函微分方程解振动的若干充分条件。
More precisely , using Robin eigenvalue method the authors obtained several sufficient conditions of oscillation of solutions of parabolic functional differential equations with continuous distributed deviating arguments .
-
对具有无穷时滞中立型泛函微分方程,本文利用Liapunov泛函,建立概周期解的存在性定理。
This paper presents some existence theorems for almost periodic solutions to neutral functional differential equations with infinite delay by means of Liapunov functionals .
-
首先利用泛函微分方程的单调理论分析了单种群chemostat模型正平衡点的全局渐近稳定性。
The global asymptotic stability of the positive equilibrium of the model with one population is considered by using the monotone theory of functional differential equations .
-
讨论了一类乳糖正负调控网络模型的正平衡点的稳定性及局部Hopf分支,并利用一般泛函微分方程的全局Hopf分支定理,讨论了该系统全局Hopf分支的存在性。
This paper considers the stability and local Hopf bifurcation for a lac operon regulatory networks model , combing the global Hopf bifurcation for general functional differential equations , we investigate the existence of global Hopf bifurcation .
-
通过对中立型泛函微分方程的线性化特征方程根的分布分析,给出了系统的平衡点稳定性结果以及Hopf分支存在的充分条件,进而发现该系统存在对于时滞的稳定性开关的结论。
By analyzing the roots distribution of the characteristic equation of the linearized equation , stability results of the three equilibria and the existence of Hopf bifurcation are obtained . Stability switches with respect to parameter delay are detected .
-
通过运用泛函微分方程稳定性理论、分支理论、中心流形和规范型理论,对两类模型的平衡点的稳定性和Hopf分支等动力学性质进行了细致的研究。
By employing stability theory for functional differential equations , bifurcation theory , center manifold and normal form theory , some important dynamics of the two models such as stability of the equilibrium , Hopf bifurcations are detailed studied .
-
考虑一类非线性中立双曲型时滞偏泛函微分方程的振动性,利用Green定理和广义Riccati变换获得了这类方程在两类不同边值条件下所有解振动的若干充分判据。
The oscillation of a class of nonlinear neutral delay hyperbolic partial functional differential equations are considered . By using Green theorem and the generalized Riccati transformation , some sufficient criteria for oscillation of all solutions of such equations are obtained under two different boundary value conditions .
-
本文还研究了一类特殊的无限时滞随机泛函微分方程,即Kolmogorov方程,对其正整体解的存在唯一性及其渐近性质进行了讨论。
As a special case of the stochastic functional differential equations , stochastic Kolmogorov equations with infinite delay are studied . Some conditions are obtained for the existence-and-uniqueness of global positive solution and its asymptotic properties .
-
对于Hopf分支的方向和分支周期解的性质,利用偏泛函微分方程的规范形理论和中心流形约化给出了描述这些性质的显式算法。
For the direction of Hopf bifurcation and the stability and period of bifurcated periodic solutions , we give an explicit algorithm for determining these properties by using the normal form theory and the center manifold reduction for partial functional differential equations .
-
本论文主要利用上下解和单调迭代法,研究了下面的带有Neumann边界条件的二阶泛函微分方程和φ-Laplace方程在上下解反序条件下,解的存在性条件。
In this paper , we show that the method of monotone iterative technique is valid to obtain two monotone sequences converges uniformly to extremal solutions of second order functional differential equation and Laplace equation with Neumann boundary value conditions .
-
研究一类偶数阶中立型偏泛函微分方程系统的振动性,获得了该类系统在Robin边值条下所有解振动的若干充分条件,主要结果通过实例加以阐明。
The oscillation of systems of a class of even order neutral partial functional differential equations are studied in this paper . Some sufficient conditions are obtained for the oscillation of solutions of the systems under Robin boundary value condition . The main results are illustrated by some examples .
-
本文的第二第二部分着重讨论一类滞后型泛函微分方程(RFDEs)正周期解的存在性。
The second part of this paper is concerned with the theory of retarded functional differential equations ( RFDEs ) and applications to the existence of positive periodic solutions of RFDEs .
-
我们用流体流近似建立TCP-Reno拥塞控制器的动态模型,通过泛函微分方程从理论上分析了控制器的稳定性。
Using the fluid-flow approximation we model the dynamic behavior of the TCP-Reno congestion controller . By means of the theory of function differential equation we analyze the stability of this model .