海底采矿

hǎi dǐ cǎi kuànɡ
  • undersea mining;undersea/offshore mining
海底采矿海底采矿
  1. 深海底采矿机器车运动建模与控制研究

    Study on Deep Seabed Mining Robot Vehicle Motion Modeling and Control

  2. 在此基础上还可以开发出海底采矿遥控车等重量较大的应用机器人。

    It can also be developed to apply in ocean mining vehicle .

  3. 基于层次分析和灰色理论的海底采矿方法选择

    Under-sea Mining Method Selection based on Analytic Hierarchy Process and Gray Theory

  4. 海底采矿移动机器人的避障研究

    The Research of Obstacle Avoidance of Deep Sea Mobile Robot for Minerals

  5. 海底采矿集矿机智能控制系统的研究

    Research on Intelligent Control System for Submarine Mining Collector

  6. 深海底采矿技术当前发展状况讨论会;

    Seminar on the current status of developments in Deep Sea-Bed mining technology ;

  7. 深海底采矿机器车控制软件体系结构设计与实现

    Control software architecture design and realize for a deep seabed mining robot vehicle

  8. 海底采矿车多自由度铰接机构设计与优化

    Design and optimization of a multi-degree-of-freedom articulated mechanism

  9. 怎样安全而又经济的进行海底采矿是目前研究的重要课题。

    How to exploit the seabed minerals economically and safely is an important research object .

  10. 探讨了深海底采矿机器车的发展趋势和未来的研究重点。

    Meanwhile , it discusses developing trend and study emphasis for deep seabed mining robot vehicle .

  11. 初步设计出海底采矿车的基本结构,并实现可视化。

    Designing elementarily the essential structure of the seabed mining vehicle as well as realizing the visualization .

  12. 海底采矿可能会破坏独特的生态系统,并将污染带入深海。

    Seabed mining has the potential to tear up unique ecosystems and introduce pollution into the deep sea .

  13. 海底采矿环境复杂,采矿车行走不平稳,车轮打滑严重,定位手段受到限制。

    The methods of sea-bed mining vehicle positioning are limited by complicated environment , unsteadily working condition , wheel slippage .

  14. 欧丹腾将此称作国际海床管理局史上的一座新的里程碑,也是深海海底采矿制度上的一座里程碑。

    Odunton called a'a new milestone in the life of the authority and for the regime for deep seabed mining .

  15. 建立海底采矿车运动状态方程,并提出了关键运动参数在线计算模型。

    The moving state equation of the vehicle is established . Propose the online calculating models of the key moving parameters .

  16. 针对深海底采矿机器车特殊工作环境和特殊工作特性,采用混合体系结构,设计了深海底采矿机器车控制软件体系结构;

    Focusing on deep seabed robot vehicle 's special working environment and special working characteristics , control software architecture is designed .

  17. 海底采矿集矿机需在5000~6000m的海底沿预设的路线进行采矿作业。

    Submarine mining collector is needed to work at 5000 ~ 6000 m deep from sea level according to a preset route .

  18. 三山岛金矿是我国第一个进行海底采矿的硬岩矿山,矿山采用点柱式机械化上向水平分层充填法开采。

    Sanshandao Gold Mine is the first hard rock mine carrying out under-sea mining in China , which adopts the mechanical upward horizontal slice stoping-filling method with pointed pillars .

  19. 三山岛金矿新立矿区是我国第一个进行海底采矿的硬岩矿山,国内仅龙口在海下采煤。

    Xinli mining area of Sanshandao gold deposit is the first hard rock mine which belongs to the under-sea deposit in our country , and only Longkou is mining coal under sea in domestic .

  20. 移动机器人定位导航的多传感器信息融合方法一直是机器人研究领域极具挑战性的问题之一,特别是对于未知复杂环境下作业的机器人,如深海底采矿集矿机。

    Multi-sensor information fusion for positioning and navigation for mobile robot is one of the most challenging domains , especially for the robot operating under unknown complicate environments , for instance , the miner for sea-bed mining .

  21. 作为深海矿产资源采矿系统中的载体,海底采矿车将行走于数千米深的海底复杂地形上,必须具有良好的远程可控性。

    As the carrier of the deep-sea mining system , it is necessary for the seabed mining vehicle , which will travel on complex submarine terrain thousands meters deep under the sea , to be controlled remotely and easily .

  22. 摘要:作为深海采矿系统的重要载体,海底采矿车工作在数千米水深的复杂未知海底表面,其行走控制一直是深海采矿系统的重要技术难点之一。

    Abstract : As an important carrier of deep sea mining system , seabed mining vehicle works under thousands meters depth of water in complicated and unknown ocean environment , the driving control is one of the important technical problems .

  23. 平斯基博士、麦考利博士和同事们努力为海洋的健康状况绘制出了一幅更清晰的图像,他们对海量数据进行了汇总,从化石记录的发现,到现代集装箱航运、渔获量和海底采矿的统计数据,这些数据的来源多种多样。

    Dr. Pinsky , Dr. McCauley and their colleagues sought a clearer picture of the oceans " health by pulling together data from an enormous range of sources , from discoveries in the fossil record to statistics on modern container shipping , fish catches and seabed mining .

  24. 基于VC++串口通信编程在深海底自动采矿系统中的应用

    Application of Serial Communication Programming based on VC + + Deep Seabed Automatic Mining System

  25. 最后结合深海底自动采矿实例,实现水下工控机与光端机之间串口数据通信。

    At last one of the four methods is used in deep seabed automatic mining and the serial data communication between the deep sea engineering control machine and the fiber options is finished .

  26. 锰结核和钴结壳是重要的海洋矿产资源,赋存于1500~6000m的海底,深海采矿系统必须将从海底采集的矿石输送到海面采矿船上,因此,矿石输送技术是深海采矿的关键技术。

    The manganese nodules and cobalt crust are poly-metallic minerals that lying widely on the seabed about 1500-6000 meters deep . They have to be transported to the ship on the sea level through the deep-sea mining system of which the mineral transporting technology is most important .

  27. 海底自行式采矿车自主定位是采矿车执行智能控制、自主导航、自主避障、安全作业等各种行为的基础。

    The independent positioning of sea-bed mining vehicle is the base of intelligent controlling , independent navigation , self-localization , obstacle avoiding and safely working .

  28. 由于海底固有地形特点的影响,以及海底采矿移动机器人自身结构和运动等因素的制约,因此研究海下移动机器人的避障问题有着重要意义。

    Due to the proper geography characteristics of the sea bottom , and the structure and the movement of the deep sea mobile robot itself , it is important to study obstacle avoidance of the deep sea mobile robot .

  29. 新立矿区主要可采矿体分布于海底岩体中,查明矿区工程岩体的渗透特征对保障海底采矿安全具有十分重要的意义。

    In order to ensure the safety of undersea mining , it is of great significance to verify the seepage characteristic of the rock mass in the Xinli mining area .