激发态

jī fā tài
  • excited state
激发态激发态
  1. 能级分析和光谱扫描结果表明上转换辐射光为绿色荧光,波长为538nm和514nm,其产生机理为铒离子的激发态吸收效应(ESA)。

    Analysis show that the upconversion fluorescence is green one with wavelengths of 538 nm and 514 nm due to excited state absorption ( ESA ) .

  2. 然而传统的IrⅢ配合物在可见区的吸收很弱并且其三重激发态寿命很短,这严重影响了其在新兴的领域(光催化、光动力治疗和TTA上转换等)中的应用。

    However , traditional Ir ⅲ complexes show weak absorption of visible light and short triplet excited state lifetimes that affects the newly developed applications ( photocatalysis , photodynamic therapy and TTA upconversion ) seriously .

  3. 电子在激发态轨道上只能逗留很短的时间。

    An electron moving in an excited orbit'stays there only for a very short time .

  4. 晕状日冕物质抛射~(14)C激发态中子晕

    Neutron Halo of the Excited States in ~ ( 14 ) C

  5. Lie代数方法对SO2分子振动激发态的研究

    Lie Algebraic Method for the Vibrational Excited States of a SO_2 Molecule

  6. 用稳态反饱和吸收法测量C(60)的激发态吸收截面

    Measurement of Excited State Absorption Cross Sections in C_60 by Using the Method Of Steady State Reverse Saturable Absorption

  7. 高pH介质中1-氨基萘的双重荧光&氨基的激发态酸式电离

    Dual Fluorescence from Aqueous 1-Naphthylamine Solutions of High pH & Excited-State Acidic Dissociation of Naphthylamine

  8. CO(υ)高振动激发态向C2H2的振动传能研究

    Vibrational Energy Transfer from Highly Excited State CO to C_2H_2

  9. C(60)/PMMA的单重态激发态吸收光限幅研究

    Optical Limiting in C 60 / PMMA Composite Based on Singlet Excited State Absorption

  10. 类氧铥离子辐射跃迁几率和激发态寿命的GRASP计算

    Grasp calculation of radiative transition probabilities and radiative lifetimes for 0 like TM ion

  11. 利用分子束和激光技术研究电子激发态原子、分子的态-态传能(II)&亚稳态原子传能和激发态分子内能量传递

    Study on the energy transfer of electronically excited atoms and molecules by molecular beam and laser

  12. 激发态Cs原子参与的碰撞能量转移

    Collisional Energy Transfer with the Participation of the Excited Cs Atoms

  13. ~(141)Nd激发态的在束γ谱学研究

    In-beam γ - Ray Spectroscopy of Excited States in ~ ( 141 ) Nd

  14. Cr~(4+)∶YAG晶体的激发态吸收研究

    Absorption of Excited State of Cr ~ ( 4 + )∶ YAG Crystal

  15. GaAs中与施主高激发态有关的共振极化子效应

    Resonant polaron effect related with high excited states of donors in GaAs

  16. 激发态Cs2分子的光离解

    Photodissociation of the excited Cs_2 ( E ) state

  17. Al原子高激发态nf~2F光谱与Stark效应观察

    Spectrum of highly excited states nf ~ 2f of Al and observation of Stark effect

  18. 用ECM方法研究N2分子部分激发态的势能函数

    Studies on the potential curves of some excited states of nitrogen molecule N_2 using energy consistent method

  19. Sr原子高激发态光谱的研究

    Study of Highly Excited States of Atomic Strontium

  20. 用共振多光子电离法研究Gd原子的高激发态

    Measurements of high-lying levels of atom Gd by resonant multiphoton ionization

  21. 结果证实13C的第一激发态为单中子晕核态,首次从实验上证实在B稳定线上存在激发的晕核态。

    The results make sure that the first excited state of 13C is the one-neutron halo state .

  22. NH2基态和激发态的SAC-CI和量子拓扑方法研究

    Studies on the Ground and Excited States of NH_2 by SAC-CI and Topological Method

  23. ZnS:Mn,Tm材料中Mn中心高激发态与Tm中心间的能量传递及温度的影响

    Energy transfer from the higher excited state of Mn to TM in zns : mn , tm

  24. Ar~+离子和He、Ne原子碰撞过程中的激发态和发射截面

    Excited states and emission cross sections in collisions between ar + and he , ne

  25. CH,NH和OH自由基基态与低激发态分子结构与势能函数

    Structure and potential energy function of CH , NH and OH free radical ground and low-lying states

  26. 根据自由电子气模型,提出了一种用于计算原子激发态能级的X_a交换参数的理论模型。

    Based on the free-election-gas model , a theoretically determined X_a exchange parameter method which is suitable for calculating excited state energies was presented .

  27. 用这些作为能量缓变函数的量子亏损,可以实现对任意高激发态(n≥10)能量的可靠预言。

    The energies of any highly excited states with n ≥ 10 also can be reliably predicted by using the quantum defects which are function of energy .

  28. N2O在193nm光解:振动激发态NO(v)的生成及与N2O的碰撞弛豫

    Photodissociation of N_2O at 193nm : Formation and Quenching of Vibrational Excited NO ( v ) by N_2O

  29. 在T>150K时,激发态Er与非晶硅间的能量背迁移降低了Er的发光效率。

    At T > 150K , energy back transfer between excited Er and a - Si decreases the PL efficiency .

  30. 目前,H2O~+激发态的理论数据还不多,激发态的势能面计算是H2O~+理论计算的重要一环。

    Nowadays , it is an important step to study the potential energy surface of H2O + considering few data of the excited state of it .