登月轨道

  • 网络lunar landing trajectory
登月轨道登月轨道
  1. 基于不变流形的登月轨道设计

    Lunar Landing Trajectory Design Based on Invariant Manifold

  2. 研究了基于三体问题的不变流形设计低成本登月轨道的问题。

    The low-energy lunar landing trajectory design using the invariant manifolds of restricted three body problem is studied .

  3. 登月轨道初速及飞行时间限制;

    The limits of initial velocity and flight time of landing moon orbit ;

  4. 讨论了探测器从低高度圆型地球停泊轨道出发,沿速度方向施加脉冲推力进入登月轨道,不加制导自由飞行击中月球的轨道设计问题。

    In this paper , the problem of orbital design of landing moon detector is discussed which starts from near earth circular parking orbit , produces thrust in velocity direction , entries landing moon orbit , and hits the moon with on guiding and free flight .

  5. 定常幅值小推力登月飞行器轨道研究

    On constant - amplitude low - thrust lunar probe trajectories

  6. 小推力登月飞行器轨道初步研究

    Preliminary study on minimum-fuel lunar probe trajectories

  7. 我们采用适当的方法选取了满足登月飞行轨道计算精度要求的摄动模型。

    We explain the reason and devise a new method for choosing appropriate pertubation models to satisfy the precision requirement of lunar - landing orbit determination .

  8. 进行了基于二体模型和平面三体模型的登月飞行器轨道控制方法的初步研究。

    Preliminary research on lunar probe orbit control technology based on planar two bodies model and planar polar three bodies model is introduced in this paper .

  9. 对自由返回轨道与Hybrid轨道进行了概述与定性分析,提出了满足一定约束的自由返回轨道详细设计方法,计算获得的精确算例可作为载人登月任务标称轨道。

    Firstly free-return trajectories and hybrid trajectories are introduced briefly and analyzed qualitatively . Then an approach to design free-return trajectories satisfying certain constraints is proposed , with which a precise trajectory is calculated and can be treated as a nominal trajectory of the manned lunar landing mission .

  10. 建立了空间站支持登月的奔月轨道模型,并结合工程实际背景,给出了轨道设计的约束条件。

    The scale of space station for manned lunar-landing mission is conceived . 2 . A trans-lunar trajectory model is established , and the constraint conditions are given according to practical situations in engineering .

  11. 登月飞行器软着陆轨道的遗传算法优化

    Genetic algorithm optimization of lunar probe soft-landing trajectories