直言命题
- categorical proposition
-
直言命题的对当关系
Opposition of categorical proposition
-
所谓“反三段论”,只有当其中的基础命题为传统直言命题时才有效。
Only fundament proposition is to be traditional categorical proposition , can socalled " antisyllogism " be valid .
-
直言命题变形推理形式“SAP→SOP”的成立,超出了传统逻辑理论中“前提中不周延的项在结论中不得周延”这一普遍规律的限制。
The deformed reasoning form " SAP → OP " in categorical proposition goes beyond the rule in traditional logic that non-distributive item in premise cannot distribute in conclusion .
-
直言命题及其推理的主项存在问题
The existential problem of subject in categorical propositions and their arguments
-
直言命题变形推理特例分析
A Case Study of Deformed Reasoning in Categorical Proposition
-
直言命题的同质等值换位推理
Reasoning of Homogeneous Equivalence Replacement of Categorical Proposition
-
论直言命题的存在含义&对一个老问题的系统思考
On the Existential Import of Categorical Proposition & A Systematic Thinking about an Old Problem
-
随着A、O命题同质换位确定后,我们可以认为直言命题的换位推理应该是同质等值推理。
With the confirmation of homogeneous replacement of Propositions A , O , the replacement of categorical proposition should be the reasoning of homogenous equivalence .
-
一论命题的分类:在普通逻辑中,命题分成简单命题和复合命题两类,简单命题分成直言命题和关系命题两种。
The first is about prepositional classification . In general logic , proposition consists of two categories , the simple proposition and the compound proposition .
-
对于直言命题的变形推理,传统上认为A命题只能换位为I命题,O命题不能换位。
As for the transformational reasoning of categorical proposition , it is traditionally thought that Proposition A can only be replaced by Proposition I , Proposition O cannot be substituted .
-
对亚里士多德的直言命题理论作了全面的分析,指出亚里士多德在逻辑史上第一次引进词项变元,建立了对当方阵,为三段论奠定了基础。
This paper carries out full analysis on Aristotle 's theory on categorical proposition and points out that he introduced , for the first time in logic history , term variable , established opposition matrix , and laid basis for syllogism .
-
汉语的否定句对应于逻辑上直言否定命题和复合命题中的负命题两种不同类型的命题。
Negative sentences in Chinese are corresponding to two kinds of different propositions in logic . They are categorical negative proposition and the negative proposition of compound proposition .