真分式
- 网络proper fraction
-
分解真分式为最简分式
The resolution from proper fraction to simplest fraction
-
从而大大简化了分式分项的计算,简化了有理真分式的积分运算。
The calculation of every fractions in Separating fraction and integral of rational proper fraction is reduced by the method .
-
有理既约真分式化为部分分式的又一方法
Another Method for Transforming Rational reduced True Fraction into Partial Fraction
-
子集和组的求解以及真分式背包体制的攻破
Solving Subset Sum System Problem and Breaking Pure Fraction Knapsack Cryptosystem
-
曲面的尺度对应有理真分式的不定积分
On the Non-conformal Mapping of Surfaces The Indefinite Integral of Rational Proper Fraction
-
有理真分式积分方法探析
A Research and Analysis of the Method of Integral of Rational Proper Fraction
-
关于真分式的部分分式分解
On the Partial Fraction Expansion of True Fraction
-
有理真分式裂项的快速方法
A Simple and Direct Method of Splitting Rational Proper Fraction into Sum of Partial Fractions
-
真分式背包体制
The Knapsack System Based on Fraction
-
给出了把真分式分解为部分分式之和的一个简便方法。
We give a simple method of partitioning a true fraction into the partial fraction expansion .
-
本文还进一步分析了真分式背包体制的性能,介绍了使用修改的L~3算法攻击它的方法。
The paper further analyses the performance of the pure fraction knapsack cryptosystem , presents some methods to break them .
-
本文利用导数给出了有理真分式分解为部分分式时的一个简洁的系数公式以及该公式的使用。
This paper , by using derivative , gives a concise coefficient formula and its usage in decomposing rational into partial fraction .
-
本文利用求导与不定积分的关系,得出了有理真分式函数不定积分公式,并利用导数计算其不定积分。
A integral method of rational functions is proposed to seek explicit exact solutions of evolution equations with polynomial nonlinear terms of any powers .
-
目的:探索在分子水平上对独活药材进行鉴别的方法。本文用分解真分式为最简分式的分解基本定理来确定最简分式分子里的常数。
Objective : Search after method to differentiate Tetrandra Root on the numerator level . This article defined constant in numerator of simplest fraction by the way of resolve proper fraction to simplest fraction .
-
本文利用传递函数对偶的概念,给出了非真有理分式阵的实现算法和最小实现算法,提出了广义系统的最小实现定理和最小实现之间的强等价定理。
In this paper , two theorems about the minimal realizations of singular system are developed , and two algorithms which respectly produce the realization and minimal realization of improper rational matrices are given .