算子代数
- 网络operator algebra
-
第二章利用对称理想给出∏k空间上退化算子代数分类的概念。说明∏k空间上退化算子代数分为六类。
In chapter 2 , we give the classification concept of degenerate operator algebras on the nk spaces by symmetric ideals , and show that thus operator algebra consists of six classes .
-
B(X)作为最基本的算子代数,其上保持问题的研究是其它算子代数上保持问题研究的基础。
As B ( X ) is one of the most fundamental operator algebras , the preserver problems on B ( X ) is the research foundation of the similar problems on general operator algebras .
-
算子代数的Cσ性质、Cσ性质与自反性
Properties C_ σ, and Reflexivity of Operator Algebras
-
n元微分算子代数的导子李代数
Lie Algebra of Derivations of algebras of differential operators in n - variables
-
与李代数(?)2相关的顶点算子代数N(k,0)及其不可约模
VOA Associated to Affine Lie Algebra (?) _2 and Its Irreducible Modules
-
Banach空间上算子代数K-理论的初探
Study on the K-theory of Operator Algebras on Banach Spaces
-
近年来,对于某些特殊的算子代数的Lie理想的研究取得了丰硕的成果。
This connection has been investigated for some special algebras in recent years , and get a plentiful harvest .
-
RH模上算子代数与算子理论
Operator Algebra and Operator Theory on RH Module
-
复Hilbert空间上的实算子代数
Real Operator Algebras on a Complex Hilbert Space
-
建立了Lie群和Lie代数、Riemannian流形与空间算子代数理论联系的模型。
Develop the formulation of the the Lie group , Lie algebra and Riemannian manifolds and spatial operator algebra .
-
在这一章的最后,我们简要地介绍了非交换算子代数C(Dx,Dy,x,y)中的主要结论,并讨论了带有积分号的恒等式的自动证明问题。
At the end of this chapter , we introduce the main results in C and discuss the problem of verifying the identities with the integral sign .
-
Toeplitz算子代数的非对角不变的不变理想
An Invariant Ideal of Certain Toeplitz Algebra Which is not Diagonal Invariant
-
Toeplitz算子代数的归纳极限
Inductive Limits of Toeplitz Algebras
-
对于算子代数的Lie结构(如Lie理想、Lie导子、Lie同构等)的研究人们一直在进行着,这是因为它对于全面揭示各种算子代数的结构具有重要的意义。
Many people have been studying the Lie structure ( Lie ideals , Lie derivations , Lie isomorphism ) because it is very important to reveal the structure of various operator algebras .
-
后面两章结合Banach空间结构理论中G-M系列成果对Banach空间上算子代数B(X)的K群进行研究。
The next two chapters discuss K-groups of operator algebras B ( X ) on Banach space X combining the series of G-M results of the structural theory on Banach space .
-
特别地证明了对于vonNeumann代数,强自反性与一秩算子代数的σ&弱稠密性是一致的。
Particularly , it is proved that for Von Neumann algebra the strong reflexivity is equivalent to the density of its rank-one operator algebra .
-
硕士学位论文《关于算子代数B(X)的K群的相关研讨》是泛函分析学科Banach空间理论与算子理论有机结合进行研讨的产物。
Master 's academic article " Study on the K-groups of operator algebras B ( X ) " is the organic combinative result of the study on the theory of Banach space and the operator theory of functional analysis .
-
本文考虑Pontrjagin空间上的算子代数。讨论了退化算子代数的分类问题;算子代数理想的对称性问题;算子代数的导子问题以及算子代数的交换性问题。
We consider the operator algebras on the Pontrjagin spaces , and study the classification problem of degenerate operator algebras , the derivations problem of operator algebras , and the symmetric problem of ideals in operator algebras .
-
标准算子代数上完全保可逆性或零因子的映射
Maps Completely Preserving Invertibility or Zero Divisors on Standard Operator Algebras
-
自反算子代数的模和交换子以及一阶上同调空间
Modules and Commutants and First Cohomology Spaces of Reflexive Algebras
-
我们主要讨论了作用在半群上取值于算子代数的完全单调函数。
We mainly consider completely monotone functions from semigroup to operator algebras .
-
基于空间算子代数的空间多体系统动力学递推计算
Recursive Computation of Space Multibody Dynamics Using Spatial Operator Algebra
-
有限维非退化可解李代数的顶点算子代数
Vertex Operator Algebra Associated with Nondegenerate Solvable Lie Algebras
-
基于空间算子代数理论多刚体系统反向动力学仿真
Inverse Dynamics Simulation of Rigid Multibody System Based on Spatial Operator Algebra Theory
-
本文研究了算子代数的K-理论。
The article discuss the K-theory of operator algebras .
-
算子代数发展概述
On Summarization on the Development of Operator Algebra
-
非退化可解李代数的顶点算子代数的一类子代数结构
A kind subalgebra structure of vertex operator algebra associated to nondegenerate Solvable Lie Algebras
-
广义质量的空间算子代数描述
Depiction of Generalized Mass by Spatial Operator Algebra
-
顶点算子代数的模扩张
Adjoining a Module to a Vertex Operator Algebra
-
空间算子代数刚柔耦合系统动力学软件流程
Dynamic software flow of the rigid-flexible coupling system based on spatial operator algebra theory