线性谐振子

  • 网络linear harmonic oscillators
线性谐振子线性谐振子
  1. 在研究线性谐振子的能级和相干态时,占有数表象是十分有用的。

    The particle-number representation is very useful in the research of energy levels and the coherent states of linear harmonic oscillators .

  2. 线性谐振子与q变形振子量子运动的新描述

    New Description for Quantum Motions of Linear Harmonic Oscillator and Q-deformed Harmonic Oscillator

  3. 用泛函Euler方程求解线性谐振子的基态能量和波函数

    Solving ground state energy and wave function of a linear harmonic oscillator by Euler equation

  4. 利用泛函极值满足的Euler方程,解出了线性谐振子的基态能量和波函数。

    The ground state energy and the wave function of a linear harmonic oscillator are solved by Euler equation comforted to functional extremum .

  5. 线性谐振子势的相对论效应Ⅰ:Klein-Gordon方程

    Relativistic effects of linear harmonic oscillator ⅰ: Klein-Gordon equations

  6. 本文研究了具有线性谐振子型势的Klein-Gordon方程的束缚态,给出了束缚态存在的条件是标量势大于或等于矢量势。

    In this paper , bound states of Klein-Gordon equation with linear harmonic oscillator tyPe potential are studied .

  7. 通过把库仑问题转换成线性谐振子,可以建立二维和三维氢原子不扩散的相干态,力学量在这些相干态中的平均值给出物理空间中Kepler轨道的运动。

    Transforming the Coulomb problem to harmonic osillator , we construct nonspreading coherent states for the 2D and 3D hydrogen atom and show that the expectation values of the observables in Q.

  8. 关于线性谐振子解法的讨论

    Discussion on The Methods of Solving Linear Harmonic Oscillator

  9. 在能量表象中用密度矩阵处理线性谐振子

    Treat of Linear Harmonic Oscillator By Means of Density Matrix In Energy Image

  10. 线性谐振子力学量算符矩阵元通式的研究

    General Formula of Matrix Elements of Quantum Mechanical Operator for Linear Harmonic Oscillator

  11. 介观系统线性谐振子的能级宽度

    Energy level width of linear oscillator in mesoscopic system

  12. 线性谐振子的计算机代数计算

    Using Computer Algebra to Calculate the Linear Oscillator

  13. 线性谐振子量子状态讨论

    Research of quantum state for liner vibrator

  14. 密度矩阵与线性谐振子

    The density matrix and linear harmonic oscillator

  15. 线性谐振子薛宝谔方程的简单求解及范得瓦尔斯力

    The Simple Solution of Schrodinger Equation of Linear Harmonic oscillator and Vander weles 's force

  16. 本文讨论了线性谐振子的级数解和算符法,导出了两者之间的关系。

    The operator theory method lead to the uncertainty relation of one dimensional infinite well ;

  17. 线性谐振子的算符理论

    The Operator Theory of Linear Resonance

  18. 线性谐振子在相干态表象中转换矩阵元的计算及其应用

    Calculation and application of the linear harmonic oscillator transformation matrix element in the coherent state representation

  19. 从线性谐振子哈氏量出发,通过正则变换,得到了受迫阻尼谐振子哈氏量。

    The damped harmonic Hamiltonian is infered from harmonic Hamiltonian , by introducing the canonical transformation .

  20. 应用能量测不准量公式到介观系统,可得线性谐振子的能级宽度。

    Applying the formula into mesoscopic system , we get the energy level of linear oscillator .

  21. 在一维线性谐振子模型基础上,应用薛定谔方程分析了晶体中原子的概率分布;

    The atom 's probability in crystal was investigated by using the one-dimensional linearity resonance model and the Schrodinger equation .

  22. 用初等方法计算了二维线性谐振子和刚性双原子分子两种情况的能量曲面所包围的相体积。

    A simple method is used to calculate the phase volumes enclosed by energy surfaces of 2-dimensional harmonic oscillator and rigid diatomic molecule .

  23. 本文先介绍用不确定关系粗略计算一维线性谐振子零点能,然后再结合普朗克量子假设给出谐振子能级公式。

    In this paper we introduced how to use uncertain relationship to simply calculate the zero position energy of one dimension linear harmonic oscillator , and then the resonant energy grade equation were gotten based on Planck hypothesis .