航向角

  • 网络yaw;heading;course angle;Azimuth
航向角航向角
  1. 利用仿真数据对该算法进行验证,结果表明,该算法能够克服Kalman滤波精对准的缺陷,提高对准精度,尤其是航向角的精度。

    By the simulating data , it is verified that this new algorithm can overcome the shortcomings of Kalman filtering in SINS refined initial alignment and improve the alignment accuracy , especially the yaw accuracy .

  2. 第二,结合姿态角约束,使用金字塔算法提高了整周模糊度求解效率。经过实验,算法在基线长度为3m的条件下,航向角精度优于0.1°。

    Second , under the constrain of attitude angle , we use the pyramid algorithm to improve the efficiency of ambiguity search under the condition of three meter length baseline , the accuracy of the yaw can reach 0.1 .

  3. 基于角锥棱镜和面阵CCD的动态基座航向角校准

    Course angle calibration of dynamic base with retro-reflector and CCD

  4. 基于GPRS数据传输技术的航向角指示器的客户端设计

    The Design of the Client Side of Course Angle Indicator Based on the Data Transmission Technique of GPRS

  5. 该文提出了用两台GPS接收机测量同一颗卫星所得的伪距差求算舰船的航向角和姿态角的方法,推证了航向角和姿态角的计算公式。

    The method of ship 's heading and attitude measurement is proposed based on the delta-pseudorange using two GPS receivers to measure the same satellites , and the formula are deduced also in this paper .

  6. 该算法利用非线性最小二乘平差原理对CCD地球敏感器成像进行处理,实现了在月球表面CCD地球敏感器的矢量观测功能。结合加速度计的测角原理,实现了航向角确定。

    Non-linear least squares bundle adjustment is used to process the images from CCD earth sensor , consequently , the vector observation function of CCD earth sensor is achieved on lunar environment .

  7. 实验结果表明:构建的RBF神经网络能够实时获取精确航向角,保证移动机器人在户外工作环境中完成指定任务。

    The results of experiment show that the designed neural network can acquire the accurate heading angle and guarantee the robot to complete assigned tasks in outdoor operational environment .

  8. 通过LQR跟踪控制器跟踪纵向参考轨迹来实现纵向轨迹制导;通过航向角误差走廊约束来实现侧向轨迹控制。

    The longitudinal reference trajectory is tracked by LQR tracking controller . The lateral trajectory is controlled by heading error corridor .

  9. 研究结果表明,在SINS动基座对准过程中,同时改变俯仰角、横滚角和航向角的俯冲转弯横滚角变化是一种最佳的机动方式,计算机仿真结果验证了该机动方式的有效性。

    The research results demonstrate that the dive-round-roll maneuver is the optimal maneuver manner for initial alignment of SINS on moving bases , and the computer simulation results illustrate the validity of this maneuver .

  10. 采用坐标变换技术在雷达天线的方位和俯仰轴上对船摇姿态角(横摇角R、纵摇角P和航向角H)进行角度实时补偿以达到稳定雷达天线的作用。

    The coordinate transformation technology is adopted to compensate with real time the attitude angles ( rolling angle R , pitch angle P and course angle H ) of the swinging ship on the azimuth and elevating axis of the radar antenna in order to stabilize the radar antenna .

  11. 设计了基于数字罗盘辅助MIMU的粗对准和基于UKF的非线性精对准方案,分析了粗对准精度,建立了包含航向角误差的非线性对准模型;

    The proposed initial alignment approach was studied . The accuracy of coarse alignment was analyzed , and the nonlinear system model including azimuth error was built . The initial alignment of MIMU was simulated .

  12. 经过静态和动态车载试验证明GPS姿态传感器切实可行,在基线长度为1.8m的条件下,航向角准确度能够达到0.1°。

    Which carried by a car has been ( tested ) at static and dynamic state on the highway . Proved that the GPS attitude sensor is practicable . Under the condition of 1.8 meter baseline , the accuracy of the yaw angle can be reached to 0.1 ° .

  13. 研究了轮式移动机器人(WMR)的运动问题,分析了一种理想滚动情况下航向角控制的差动运动模型。

    This paper studies the problem of modeling on the kinematics for wheeled mobile robots ( WMR ), and analyses a differential steering kinematics model in the case of the ideal rolling in order to fulfil a steering angle control .

  14. 对不同速度、距离时水下航行体的航向角和距离估计进行了仿真试验,结果表明,在航行体航向角小于35°,距离大于700m时,可得到理想的估计值。

    The simulation tests for the course angle and distance estimation under different speeds and distances are performed , and the results show that the ideal values are obtained when the course angle is less than 35 degree and the distance is greater than 700 meters .

  15. 外弹道数据处理中航向角精确计算方法

    A Method for Accurate Heading Angle Calculation in Metric Data Processing

  16. 水下高速航行体的航向角和距离估计方法

    Estimation of Course Angle and Distance for High Speed Underwater Vehicles

  17. 利用建立的数学模型计算复原力矩,并绘制了稳性曲线,绘制了当船舶与波浪不同相对位置时,不同波长,不同波高,不同航向角,以及重量重心变化等多种情况下的稳性曲线;

    Calculate the right moment and draw the stability curve .

  18. 通过绘制的稳性曲线分析了船舶在不同波长,不同波高,不同航向角等多种航行状态对船舶稳性的影响。

    Study the relation of stability and wavelength , wave height , course angle .

  19. 第二,只允许航向角变化。

    The other only change flying angle .

  20. 数字式航向角指示器的设计

    Design of Digital Course Angle Indicator

  21. 从系统的可观测性及航向角误差两方面对组合系统的性能进行了分析。

    The performance of integrated system was analyzed by the observability analysis and heading error analysis .

  22. 实验测试表明,所研制的磁阻电子罗盘能实现俯仰角、翻滚角和航向角的动态测量;在0°~360°范围内航向角的测量精度可达±1.5°;

    The experiment test shows that the compass can dynamic measure the azimuth , pitch and roll angle .

  23. 船体的振动响应不仅受波频的影响,而且受航速、航向角的影响。

    Not only the wave frequency influences the vibration , but also the speed and the course do it .

  24. 研究用于飞行器等动态基座航向角校准的大范围、中高精度航向角度测量系统。

    Large range course angle measurement system of medium-to-high accuracy was studied for the course angle calibration of vehicle dynamic base .

  25. 剖析了磁阻式罗盘的工作机理,并给出了磁航向角的计算方法。

    The work mechanism of the magnetoresistive compass has been presented and the method for calculating magnetic heading angle has been given .

  26. 提出了一种利用天空偏振光分布确定仿生导航系统航向角的方法。

    Finally , based on the horizon coordinate system , an example is given for the whole calculate process of direction angle .

  27. 同时进行了系统东西向位移、航向角、俯仰角和横滚角的仿真。

    A simulation case for estimating the displacement , the head angle , the pitch angle and the roll angle is investigated .

  28. 设置航向角误差边界值来改变倾斜角符号,从而保证航向角误差在一个较小的范围内。

    Set the heading angle error boundary value to change the symbols of bank angle , thus ensuring heading angle error in a smaller range .

  29. 利用前人的研究成果,分析了船舶在波浪中瞬时吃水与波长,航向角,横倾角之间的关系,并建立了可求解的数学模型;

    Use other people ' result , study the relations of instantaneous draft and wavelength , wave height , course angle and set up mathematical model .

  30. 为了满足精度要求,航向角的数字码位宽为16位,即系统动态范围约为0.0055°。

    In order to meet the precision requirements , digital bit of course angle is 16-bit code , i.e. the system dynamic range is about 0.0055 ° .