随机规划

  • 网络Stochastic Programming
随机规划随机规划
  1. 讨论了不确定优化问题的研究方法,综述了随机规划、模糊优化和区间优化这三类不确定优化问题的主要研究算法、优缺点,提出了进一步研究的发展方向。

    This paper reviews the literature on optimization under uncertainty , including stochastic programming , fuzzy programming and interval programming . It analyzes the popular solution algorithms to three kinds of programming , discusses the advantages and disadvantages of these methods , and forecasts the direction of further researches .

  2. 随机规划ε-逼近最优解集的Hausdorff收敛性

    The Hausdorff Convergence of ε - Approximate Optimal Solution Sets for Stochastic Programming

  3. 地下水随机规划模型的Taylor展开解法

    Method of groundwater random constrained programming model by Taylor series expansion

  4. 基于PSO的虚拟企业风险管理的随机规划模型

    PSO-based Stochastic Programming Model for Risk Management in Virtual Enterprise

  5. 针对在POOL模式下电力市场中机组容量、报价、负荷信息等不确定因素,建立了阻塞成本约束下输电网随机规划模型。

    Aiming at the uncertain factors of capacity , quoted price and load information of generators under POOL mode in power maker , the paper establishes stochastic planning models for transmission grid under congestion cost constraint .

  6. 补偿随机规划问题的一个SSLE算法

    A SSLE Algorithm for Stochastic Programming Problems with recourse

  7. 本文研究一种机会约束随机规划问题(CNR)的优化方法。

    A novel method in solving chance constrained model with normal distributed right hand side ( CNR ) is studied in this paper .

  8. 针对该问题本文提出了受限空间无碰路径多点随机规划方法(MPPM)。

    A multi-point probabilistic planning method ( MPPM ) has been presented for this problem in this paper .

  9. 并且在J-M模型下,将该约束随机规划问题近似地转化成了常规的最优化问题。

    The stochastic programming problem is reduced to a normal programming problem when the hybrid principle is applied to J-M model .

  10. 本文采用随机规划与ANN(人工神经网络模型)相结合的建模方法,设计了一种改进的GA(遗传算法)作为随机规划模型的解法,并把这种方法用于储层参数的预测。

    This paper adopts the modeling method of combination of random plan and ANN ( Artificial Neural Networks ) , designs a improved GA ( Genetic Algorithm ) qua the solution of random plan model , and applies the method to predict reservoir parameter .

  11. 针对本文建立的双层规划模型,采用基于灵敏度分析的启发式算法SAB求解。同时进一步建立了不确定条件下的双层规划模型,并且根据随机规划理论转化为确定型双层规划模型。

    Furthermore , a multi-container port bi-level programming model under the uncertainty conditions is established , and stochastic bi-level programming model is transformed into deterministic bi-level programming model according to random programming theory .

  12. 论文第三章介绍了将第二章给出的方法用于求解一种二阶段带补偿随机规划问题,分别给出基于Monte-Carlo(MC)方法产生观察点和基于拟Monte-Carlo(QMC)方法产生观察点的算法。

    The rest of this paper is organized as follows . Chapter 3 applies the method in Chapter 2 into two-stage stochastic programs with recourse , generating the observations by Monte-Carlo ( MC ) method or by Quasi Monte-Carlo ( QMC ) method respectively .

  13. 采用Benders分解法可以将这个高维度、非线性、混合整数随机规划问题分解为主问题和子问题求解:主问题是一个多目标整数规划问题,而子问题则是一个非线性随机问题。

    The Benders decomposition method can divide this large scale , non-linear , mixed-integer stochastic programming problem into two problems : a deterministic multi-objective integer programming master problem and a stochastic , non-linear operation sub-problem .

  14. 在充分考虑了各种不确定性因素的基础上进行模型设计,将随机规划理论用于建模分析,提出了以网络建设和运营费用最小为目标函数的MILP模型,最后进行实例验证。

    Then designs the model based on fully considering a variety of uncertainties factors , and analyzes the model making by stochastic programming theory , and bring forward the objective function of MILP model by the network construction and the minimum cost .

  15. 随机规划问题的最优值和最优解集的稳定性

    Stability of optimal values and optimal solution sets of stochastic programming

  16. ·设计了求解一般的多值随机规划的混合算法。

    Desire a hybrid algorithm to solve general multivalued stochastic programming .

  17. 随机规划的若干方法及其应用研究

    The Study of Some Algorithms for Stochastic Programs and Its Applications

  18. 求解带约束随机规划问题的光滑化样本均值逼近方法

    Smooth Sample Average Approximation Method for Nonsmooth Stochastic Programming with Constraints

  19. 从而必须采用其他方法来处理随机规划问题。

    Thus must use other ways to deal with stochastic programmingproblems .

  20. 两阶段随机规划的若干算法及应用研究

    Study of Some Algorithms for Two-Stage Stochastic Program and Its Applications

  21. α可靠规划与α可靠解法&解随机规划问题浅谈木马程序开发技术

    A-Reliability Programming and Solution Method for Solving the Stochastic Programming Problems

  22. 用于晶圆制造产能规划优化决策的改进随机规划方法

    The Capacity Planning for Wafer Fabrication Based on an Improved Stochastic-Programming

  23. 基于随机规划和遗传算法的虚拟企业风险管理

    Risk Management of Virtual Enterprise Based on Stochastic Programming and GA

  24. 一种机会约束随机规划问题的新解法

    A novel method in solving chance constrained stochastic programming model

  25. 饲料配方模糊规划和随机规划原理

    Principles of Fuzzy programming and Stochastic programming on Feed formulas

  26. 随机规划与线性规划在饲料配方中的应用比较

    Comparison of Stochastic Programming and Linear Programming Application in Animal Feed Formulation

  27. 具有鲁棒性的机组配对问题的随机规划模型

    A Stochastic Programming Model with Robustness for Crew Pairing Problem

  28. 相控阵雷达最优搜索随机规划研究

    Probabilistic Programming of Optimal Search Strategy for Phased Array Radar

  29. 遗传算法在船舶配件库存随机规划中的应用

    Application of genetic algorithm to watercraft fittings storage random plan

  30. 求解单阶段随机规划的一种光滑逼近法

    A Smooth Approximating Method for Solving Single Stage Stochastic Programming