非线性薛定谔方程

  • 网络Nonlinear Schrodinger Equation;Nonlinear Schrdinger Equation;NLSE;nls
非线性薛定谔方程非线性薛定谔方程
  1. 因此采用数值求解非线性薛定谔方程的办法来模拟BEC波包的隧穿过程。

    Therefore , we simulate the tunneling process of the BEC wave packet via solving the nonlinear Schrodinger equation numerically .

  2. 主要分析讨论了PMD的几种研究方法:琼斯矩阵法、斯托克斯空间法和耦合非线性薛定谔方程。

    In this paper , several study methods on PMD are analyzed , such as Jones matrix , Stokes vector and the coupled nonlinear Schrodinger equation .

  3. 本文介绍一种新的求非线性薛定谔方程(NLS方程)N孤子数值解的方法,它是一种递归的计算方法。

    ' We present a new method to obtain soliton 's numeric solution from the NLS equation , it is a recurrent method .

  4. 根据具体问题的需要,可以结合精细Runge-Kutta方法和傅里叶变换方法求解非线性薛定谔方程。

    For some specific nonlinear Schrodinger equation , it is better to compound the precise Runge-Kutta method with split-step Fourier numerical method .

  5. 同时,提出了非线性薛定谔方程的精细Runge-Kutta方法,与最新基于量子力学的相互作用绘景给出的薛定谔方程的计算方法基本一致。

    In the meantime , precise Runge-Kutta method for solving nonlinear Schrodinger equations is presented , which is the same as the recent result based on interaction picture in quantum mechanics .

  6. 以非线性薛定谔方程为理论依据,应用对称傅立叶变换,采用MATLAB编程,对色散缓变光纤(DDF)中孤子间相互作用进行了理论模拟,并与普通光纤进行了比较。

    By non-linear Schrdinger equation , soliton interaction in decreasing-dispersion fiber ( DDF ) was simulated using split-step Fourier transformation and Matlab program . The results are compared with the soliton interaction in common fiber .

  7. 通过采用分步傅里叶变换法求解非线性薛定谔方程,模拟了啁啾光脉冲有振幅调制和相位扰动下的自相位调制(SPM)对压缩光脉冲对比度和预脉冲宽度的影响。

    Self phase modulation ( SPM ) plays an important role on the compressed pulse in chirped pulse amplification lasers systems . The influences of the SPM with amplitude modulations and phase perturbations on the compressed pulse is simulated .

  8. 微商非线性薛定谔方程(DNLSE)是有众多物理应用的可积方程。

    The derivative nonlinear Schrodinger equation ( DNLSE ) is an integrable equation of many physical applications .

  9. 从光脉冲的非线性薛定谔方程出发,在忽略色散的条件下,推导并模拟了自相位调制(SPM)非线性效应下的高斯光脉冲的非线性相移、频率啁啾;

    Starting from the nonlinear Schroedinger equation of the optical pulse and neglecting the chromatic dispersion the nonlinear phase shifts and frequency chirps of the Gauss optical pulses caused by the self-phase modulation ( SPM ) are derived and computer simulated .

  10. 利用非线性薛定谔方程数值分析了基于非线性放大环镜(NALM)的纳秒方波脉冲光纤激光器。

    A nanosecond square pulse fiber laser based on the nonlinear amplifying loop mirror ( NALM ) is numerically analyzed by the nonlinear Schr ¨ odinger equation .

  11. 为了克服上面两种方法的不足,我们引入局域Bloch波图象,利用局域Bloch波图象,建立了一个广义非线性薛定谔方程来描述带隙孤子解。

    To overcome the shortcoming of the two methods , we introduce the local Bloch wave picture . Based on the local Bloch wave picture , we find that the envelop function of the field is a generalized nonlinear Schrodinger equations .

  12. 用变分法研究非线性薛定谔方程,讨论了在有色散补偿及增益平衡的光纤链中双曲正割(sech)型和高斯型准孤子的传输条件及特性。

    Properties and conditions of the propagation of sech and Gaussian type quasi soliton in optical fibre link with periodical dispersion management and power balance are discussed by variational method .

  13. 通过解析方法和数值模拟方法讨论描述超短光脉冲在光纤中传输的高阶非线性薛定谔方程和高阶Ginzburg-Landau方程。为进一步实现超高速、大容量的光信息传输提供了一定的理论依据。

    From the analytical point of view , with the aid of the numerical simulation , we will discuss the higher-order nonlinear Schrodinger equation in femtosecond regime and Ginzburg-Landau equation that describes ultrashort pulses in the presence of self-frequency shift , respectively .

  14. 介绍了光脉冲在光纤中传输的非线性薛定谔方程,并将该方程扩展,得到光脉冲在EDFA中传输的非线性薛定谔方程,最后讨论了求解该方程的分步傅立叶算法。

    The nonlinear Schroedinger ( NLS ) equation is introduced , which is used to describe the pulse propagation in the fiber . NLS is extended to describe the pulse propagation in EDFA and the split-step Fourier method is discussed , which is used to solve the extended NLS equation .

  15. 通过数值求解非线性薛定谔方程(NLS),分析了输入功率以及初始啁啾对超高斯脉冲在单模光纤中传输的影响,并且分析了当输入功率增大到141mW时呈现的光孤子效应。

    Based on the numeric solution of NLS , the effects on the propagation of super-Gaussian pluses in the single-mode fibers induced by the input power or the initiating chirp are analyzed . The soliton effect is discussed when the input power is up to 141 mW .

  16. 对描述光脉冲在非均匀光纤中传输的含频率啁啾和增益/损耗项的非线性薛定谔方程进行研究,通过Darboux变换获得该方程的孤子解,并讨论相关的性质。

    From the integrability point of view , the nonlinear Schrodinger equation and the coupled nonlinear Schrodinger equation with varying gain / loss and frequency chirping are considered , and the relevant soliton solutions are given by employing the Darboux transformation , and the properties are discussed in detail .

  17. 应用非线性薛定谔方程(HONLS)理论,考虑光纤色散三阶效应,推导出无啁啾的高斯脉冲沿光纤传输时脉冲变化的表达式,并对理论结果进行了数值模拟与分析。

    Using the nonlinear Schrodinger ( HONLS ) equation theory , the analytic expression was derived by taking into account the third-order dispersion as a Gauss pulse without chirp propagation along the single-mode fiber . The theories were numerically simulated and analyzed .

  18. 用微分矩阵法解非线性薛定谔方程的初步研究

    Pilot study of differential matrix method for solving nonlinear Schrodinger equation

  19. 非线性薛定谔方程的暗孤子传输

    Dark Soliton Transmission of the Nonlinear Schr (?) dinger Equation

  20. 简谐势阱中中性原子非线性薛定谔方程的定态解

    Stationary solutions of the nonlinear Schrdinger equation for neutral atoms

  21. 用精细积分法求解非线性薛定谔方程

    Solve the Nonlinear Schrodinger Equation by the Precise Integration Method

  22. 变形的非线性薛定谔方程的两孤子解及其特征

    The Two-Soliton Solution and Its Characteristics of the Modified Nonlinear Schrodinger Equation

  23. 非线性薛定谔方程的直接线性化

    The Direct Linearization of the Nonlinear Schr (?) dinger ( NLS ) Equation

  24. 非线性薛定谔方程混合边界问题时间周期解的存在性

    Existence of Time-periodic Solutions to Mixed Boundary-value Problem for Some Nonlinear Schrodinger Equations

  25. 介质光波导中非线性薛定谔方程的一种近似解法及其应用

    An Approximate Solution of Non-Linear Schrodinger Equation in Optical Wave-Guide and It 's Application

  26. 含时线性势非线性薛定谔方程的孤子解

    Exact Soliton Solutions and Interaction for the Nonlinear Schrdinger Equation with Time-dependent Linear Potential

  27. 用广田法求扩充的非线性薛定谔方程的精确孤子解

    Exact Soliton Solutions of the Extended Nonlinear Schr ■ dinger Equation by Hirota 's Method

  28. 本文利用变分原理,通过非线性薛定谔方程,导出光纤中传输的光学孤子相互作用。

    The interaction between two optical soliton is derived from nonlinear Schrodinger equation by variational approach .

  29. 在第一类参数约束条件下,通过拟解法给出变系数高阶非线性薛定谔方程的精确1-孤子解。

    The exact one-soliton solution is presented by the ansatz method for one set of parametric conditions .

  30. 本文采用分步傅立叶变换法求解耦合非线性薛定谔方程,对偏振模色散进行了数值模拟。

    In this thesis the coupled nonlinear Schrodinger equation is solved by means of split-step Fourier transform .