马氏体组织

  • 网络martensitic structure;martensite
马氏体组织马氏体组织
  1. 该钢经形变热处理后性能提高的主要机制是细晶强化和伴随晶粒细化而产生的马氏体组织的细化以及析出物的弥散分布。

    It was revealed that the improvements areeffected mainly through the refinements of grain size and martensitic structure and the dispersion of precipitates .

  2. 烧结合金金相组织主要是马氏体组织,但组织中存在大量孔隙,因此表现出强度都很低。

    There are a large amount of pores in the sintering alloy tissue having mainly martensitic structure , which explains the very low intensity .

  3. 试样薄化导致的Cu-Al贝氏体/马氏体组织变化

    Martensite Sheets Induced by Specimen Thinning in Cu - Al

  4. 采用TEM对形变位错密度以及马氏体组织进行了分析。

    The deformation dislocation density and martensite microstructure were also analysed by TEM .

  5. 冷却速度对Fv520(B)钢马氏体组织的影响

    Effect of Cooling Rate on Martensite Microstructure of Fv520 ( B ) Steel

  6. TEM分析发现,原子氧暴露后,奥氏体中层错发生了扩展,且出现马氏体组织。

    The TEM analysis demonstrates that there are expanded stacking fault and martensite phase existing in austenitic microstructure after AO exposure .

  7. 紧靠ASB的是窄的过渡带,为重新生成的细小的马氏体组织;

    Becoming architecture A narrow transitional band surrounds ASB and its microstructure is fine re-transformed martensite .

  8. XRD结果分析表明,不同预处理的试样经中频加热淬火后晶粒尺寸相差不大,进一步说明试样都形成了晶粒细小的马氏体组织。

    The analysis of XRD results show that the grain size treated by the different pre-heat treatment process does not changes obviously , which can further explain the forming of fine grain martensite .

  9. 认为钢材的强化来源于马氏体组织形态和强化相的沉淀硬化效应,强化相为富Al相和Mo的碳化物。

    We consider that the hardening of the steel comes from the structure of martensite and precipition hardening effects of the hardening phases . The hardening phases consist of rich aluminium phase and carbide with molybdenum .

  10. 锻造温度在线A3以上时,试样呈现板条马氏体组织,随着变形温度的升高,板条马氏体组织晶粒变大,均匀度减小。

    When the forging temperature reach line A3 , sample showed the lath martensite , with temperature increase , the lath martensite grain grows , uniformity decreases .

  11. 试验结果得出在600~680℃范围内,Nb能阻止变形马氏体组织的再结晶,时效组织主要为保持板条马氏体位向的回火索氏体,未发现粒状铁素体。

    The test results showed that Nb could prevent recrystallization of deformed lath martensite structure at 600 ~ 680 ℃, and the aged structure was tempered sorbite kept lath martensite phase direction with no ferrite particles discovered .

  12. 淬透性测定表明试验钢心部获得马氏体组织的最大淬透直径为35mm。

    Hardenability test showed that : The maximum full hardening diameters is 35 mm meanwhile the martensite microstructure in the core part of the tested steel .

  13. 75E钢线材出现马氏体组织的研究

    Study on Martensite in 75E High-carbon Wire Rod

  14. 采用多元素合金化的中碳低合金钢铸造风扇磨煤机冲击板,通过等温淬火处理,得到贝氏体与马氏体组织,硬度HRC≥45,冲击韧性ak≥40J/cm~2。

    The impact plate used in fan-type crashing machine is made of multi-alloyed medium carbon low-alloying steel inc which bainite and martenite are obtained throuth isothermal quenching . Its properties are HRC 45 and ak 40J / cm . The experimental .

  15. 结果表明在980~1120℃加热正火后,T91钢均得到板条马氏体组织,但马氏体板条束的大小显著不同。

    It established that the lath martensite is obtained through normalizing under the different austenitizing temperature within 980 to 1120 ℃, but the size of martensite lath is obviously different .

  16. 结果表明:H13钢在300℃~630℃温度范围内回火,显微组织经历了由回火马氏体组织向回火托氏体组织的转变过程,在520℃左右出现二次硬化峰。

    The results show that the microstructure transforms from temper martensite to temper troostite when the temper temperature is from 300 ℃ to 630 ℃, and the peak of secondary hardening appears at about 520 ℃ .

  17. 结果表明:在人工体液中,Cu-Zn-Al形状记忆合金的耐缝隙腐蚀性能优于未进行热处理的Cu-Zn-Al合金,其作用机理是单相马氏体组织改善了合金的电化学行为,抑制了活性溶解。

    The results show that the shape memory alloy Cu Zn Al exhibits better property than the annealed alloy Cu Zn Al . The reason is that the martensite single phase in the alloy Cu Zn Al improves electrochemical property and inhibits active solution .

  18. 热轧合金钢轨中马氏体组织的成因及避免措施

    Formation and Prevention of Martensite Structure in Hot-Rolled Alloy Steel Rail

  19. 低碳板条马氏体组织对高强度螺栓性能的改善

    Performance improvement of high strength bolts by low-carbon martensitic lath struc-ture

  20. 采用稀土催共渗技术改善非马氏体组织

    Adopt Rare Earth accelerated Co-Permeation Process to Improve Non-Martensite Microstructure

  21. 渗碳层非马氏体组织对接触疲劳性能的影响

    The Influence of Non-martensitic Structure in Carburized Layer on Contact Fatigue Property

  22. 中碳钢马氏体组织温塑性变形力学行为

    Mechanical Behavior of Medium Carbon Martensite During Warm Plastic Deformation

  23. 氮碳共渗后快冷,在渗层获得含氮碳的马氏体组织。

    Rapid cooling after nitrocarburizing , martensite structure is obtained at the diffusion layer .

  24. 实验还研究了镧对原奥氏体晶粒、变形后再结晶晶粒大小以及对淬火组织的影响,镧能细化变形后的晶粒大小以及随后的马氏体组织。

    Lanthanum can refine the recrystallized austenite grain after deformation and subsequent martensite structure .

  25. 拉伸超载同时提高准贝氏体和马氏体组织的缺口疲劳强度。

    The overload tension increases the notch fatigue strength of both microstructures on the steel .

  26. 次层为淬火马氏体组织;

    The sublevel is marstenite quenching structure .

  27. 中碳马氏体组织温压缩的流变应力及微观组织与力学性能

    Flow Stress of Warm Compression of Medium Carbon Martensite and Its Microstructure and Mechanical Property

  28. 热影响区中存在少量细小马氏体组织,且呈梯度分布。

    There ate a small amount of martensite in HAZ , and distributed in gradient .

  29. 零保温淬火后可获得细小的板条状马氏体组织。

    The microstructures of the steel are fine lath martensite after " zero time holding " quenched .

  30. 白亮层中的粘结相以及过渡层的组织均为混合的马氏体组织。

    The structure of adhesive phase and transition layer in bright layers are mixed type of martensite .