黎曼函数
- 网络riemann function
-
本文对黎曼函数的性质做归纳总结。
In this paper , the nature of Riemann function summary .
-
黎曼函数与宇宙能量密度
The Riemann function and energy density of cosmos
-
关于一类三阶EPD方程的黎曼函数及其求法
On the Riemann Function of a class of Third-Order Euler-Poisson-Darboux Equations and its Solutions
-
本文讨论了狄利克雷函数、黎曼函数的分析性质。
The Riemann function in the mathematical analysis of learning play a vital role .
-
黎曼zeta函数的乘积公式
Multiplication formulas of riemann 's zeta - function
-
以分段均匀玻色子闭弦为例,结合Casimir能量的计算,对用来消除发散的几种正规化方法,如截断法、广义黎曼ζ函数法,作简单讨论。
The Casimir energy for piecewise bosonic strings composed by two segments is calculated . Some regularization used in calculating Casimir energy , such as cut-off method and general ζ - function method , was discussed .
-
黎曼Ⅺ函数的泰乐系数
The Taylor coefficient of the Riemann ξ - function
-
本文主要讨论一类特殊的狄利克莱级数的生成函数&黎曼ζ函数。
This article mainly discusses Riemann zeta functions which are a special class of generating functions for Dirichlet series .
-
但他仍在继续追求那个更加核心的问题,就是检验黎曼ζ函数的零点。
But he continued to pursue the more central problem , that of examining the zeroes of the Riemann zeta-function .
-
误差始终能保持这样小,基本上就等价于这个命题:黎曼ζ函数的零点全都分布在平面的某条直线上。
It could be shown that the assertion that the error terms remained so very small , was essentially equivalent to the assertion that this Riemann zeta-function took the value zero only at points which all lay on a certain line in the plane .
-
他想要计算黎曼的ζ函数。
Its purpose was to calculate the Riemann zeta-function .
-
黎曼ξ-函数的一个推广
A generalization on the Riemann ξ - function
-
设Φ(t)是黎曼ξ-函数傅里叶余弦变换式中的原函数。
Let Φ( t ) be original function defined by the Fourier transform of Riemann ξ - function .
-
首先,黎曼的ζ函数的定义,是一个无限项的和式,尽管可以表示成一些其它的形式,但这些变形都要涉及到估算的问题。
Riemann 's zeta-function was defined as the sum of an infinite number of terms , and although this sum could be re-expressed in many different ways , any attempt to evaluate it would in some way involve making an approximation .
-
非负曲率黎曼流形上穷竭函数的构造
The Construction of Exhaustion Function on Riemannian Manifold with Nonnegative Curvature
-
黎曼假设等价于黎曼ξ-函数的所有零点是实的。
The Riemann hypothesis is equivalent to the statement that all zeros of the Riemann ξ - function are real .
-
黎曼假设成立的必要条件是黎曼ξ-函数的泰乐系数满足Turán不等式。
A necessary condition for the Riemann hypothesis to hold is that the Turan inequalities hold , involving the Taylor coefficients of the Riemann ξ - function .