黎曼度量

  • 网络riemannian metric
黎曼度量黎曼度量
  1. 统计流形在一定的不变原则下被证明具有唯一的黎曼度量,即为Fisher信息阵,以及一对对偶的仿射联络。

    Under the invariance principle , the manifold is proved to have a unique Riemannian metric given by the Fisher information matrix , and a dual pairs of affine connections .

  2. 讨论了FisherZ分布流形的对偶结构及其平坦性,进而给出了该流形的黎曼度量、α仿射联络和α曲率,并在该统计流形上定义了散度来衡量两点之间的距离;

    A dual affine structure is constructed on it and a divergence is defined as a distance like measure . Furthermore , the Riemannian metric , α - connections and α - curvatures of the Fisher Z manifold are given .

  3. 在Delaunay三角剖分算法的基础上,通过引入黎曼度量矩阵完成了曲面非结构网格生成,并给出了黎曼空间下的近似外接圆准则。

    Based on the algorithm of Delaunay triangulation , introduce a metric tensor to complete the surface triangulation . And the definition of the cavity in a Riemannian space is given .

  4. 针对PCA、ICA特征提取方法,基于微分几何的数学理论,综合考虑了雷达目标距离像识别中的特征提取与分类识别,提出基于黎曼度量的最近中心邻分类器。

    Put forward Riemannian metric-based nearest center neighbor classifier ( RMNCC ) on the basis of differential geometry , correlating the feature extraction based on PCA and ICA and classification in radar target recognition on the foundation of mathematics .

  5. 我们主要是来证明,那些非紧型的Hermitian对称空间恰恰就是C~n中的对称有界域,其上的黎曼度量由Bergman度量给出,以及对不可约Hermitian对称空间的刻画。

    Our main goal is to prove that those of noncompact type are exactly the bounded symmetric domains in C ~ n with Riemannian structure given by the Bergman metric , and to characterize the irreducible Hermitian symmetric spaces .

  6. 在各向同性算法中引入黎曼度量表征单元尺寸,计算两点距离,获得黎曼度量场下的Bowyer-Watson增量插点内核,实现平面各向异性Delaunay网格生成。

    Riemannian metric is introduced to define mesh sizes and to calculate point-to-point distances , thus a traditional isotropic Bowyer-Watson kernel for Delaunay mesh generation is revised for Riemannian context of planar anisotropic mesh generation .

  7. 认为曲面的共形参数化过程等价于寻找一个合适的黎曼度量,使得该度量和网格的初始度量共形等价,并且它所诱导的Guass曲率在内部点处为零。

    We think that conformal surface parameterization is equivalent to finding a proper Riemannian metric on the surface , such that the metric is conformal to the original metric and induces zero Gaussian curvature for all interior points .

  8. 奇异黎曼度量之下的分支问题的d-充分性

    D - sufficiency of bifurcation problems under singular Riemannian metric

  9. 基于黎曼度量的复杂参数曲面有限元网格生成方法

    Surface Mesh Generation Based on Riemannian Metric

  10. 纤维丛的黎曼度量

    The Riemannian metric of fiber bundles

  11. 详细阐述了曲面参数域上任意一点的黎曼度量的计算和插值方法;

    The calculation and interpolation method of arbitrary points in surface 's parametric space are detailed .

  12. 反之,对于紧致拓扑流形,能否由基本群决定在它上面是否容许有非正曲率的黎曼度量?

    Can the fundamental groups of any compact topological manifold determin that it admits a non-positively curved Riemannian metric ?

  13. 最后,应用近似化方法和黎曼度量方法,研究了机器人最优轨迹规划的问题。

    In the end , the problem of robot trajectory planning is investigated by the linearization method and Riemannian metric .

  14. 针对映射法容易产生畸变而导致网格质量较差的问题,提出了一种黎曼度量和前沿推进技术相结合的曲面网格生成方法。

    However , mapped method tends to generate distortion elements , which leads to poor quality meshes . Based on mapped method , the Riemannian metric was applied .

  15. 如何从纤维丛的底空间和纤维型的黎曼度量构造丛空间的黎曼度量,接着,定理1和定理2分别给出了向量丛和主丛关于这种度量的线素。

    A new definition concerning the Riemannian metric of bundle spaces is given by using of the Riemannian metric of related base spaces and fibers . Theorem 1 and theorem 2 give the line elements of the metric for the vector bundles and for the principal bundles , respectively .

  16. 黎曼流形上度量的Ricci流的一个定理

    A theorem of Ricci flow of metric on Riemannian manifold

  17. HCMU度量是黎曼曲面上极值度量的一个退化情形,具有整体旋转对称性。

    HCMU metric is a special kind of extremal metric on Riemannian surface with global rotational symmetric .

  18. 基于二维倒立摆,构造倒立摆的能量函数,以能量优化为目标把能量函数映射成黎曼曲面,推导出黎曼度量矩阵。

    Based on the 2D-inverse pendulum , build the energy equation , and take the least energy as target to change the equation into Riemann surface , then derive Riemann measure matrix .

  19. 在黎曼几何中,带有左不变黎曼度量的幂零和可解李群具有重要作用。如:它们出现在非紧致黎曼对称空间的等距群的Iwasawa分解中;

    Nilpotent and solvable Lie groups with left-invariant Riemannian metrics play a remarkable role in Riemannian geometry .