黎曼流形
- 网络Riemannian manifold;riemann manifold;M,g
-
关于紧致可定向黎曼流形上的ConformalKilling向量埸
Note on Conformal Killing vector fields of Riemannian Manifolds
-
二维黎曼流形的Voronoi图生成算法
Algorithm for Creating Voronoi Diagrams for Two-Dimensional Riemannian Manifolds
-
黎曼流形的B子流形
Totally umbilical Submanifolds of a Riemann manifold
-
黎曼流形的子流形上的□~r算子及其应用
Operator □~ r on a Submanifold of a Riemannian Manifold and Its Applications
-
紧黎曼流形里KillingP-形式的一些充要条件
Some necessary and sufficient conditions of Killing P-forms in Riemannian manifold
-
设Mn+p是n+p维共形平坦黎曼流形,本文对具有平行第二基本形式的子流形作了讨论。
Let Mn + p be an ( n + p ) - dimensional conformally flat Riemannian manifold .
-
文章讨论了从完备非紧强抛物黎曼流形到拼挤黎曼流形的稳定p调和映照的不存在性。
In this paper , we study the nonexistence of stable p-harmonic map from complete non-compact strong-parabolic Riemannian manifold to pinching Riemannian manifold .
-
本文研究了稳定p调和映照,通过新的估计方法,得到了某种紧致单连通的拼挤黎曼流形上非常值稳定p调和映照的不存在性
In this paper , we study the p-harmonic maps , use a new estimate method , and obtain the nonexistence of stable p harmonic maps
-
本文研究了次黎曼流形(M,D,g)上的测地线,这里M(?)
In this paper we study the geodesics in sub-Riemannian manifold ( M , D , g ) , where M (?)
-
黎曼流形的Delaunay三角化和Voronoi图
Delaunay triangulation and Voronoi diagrams for Riemannian manifolds
-
带有极点的黎曼流形上Laplacian的本质谱
On the Spectrum of the Laplacian on a Riemannian Manifold with a Pole
-
完备黎曼流形上的Jacobi场
The Jacobi Fields on a Complete Riemannian Manifold
-
关于子流形在某些黎曼流形中的pinching问题
Some Pinching Problems about Sub Manifolds in Some Riemannian Manifolds
-
关于Ricci对称的黎曼流形的孤立性
On the Isolation Phenomena of Riemannian Manifold with Ricci Symmetry
-
黎曼流形上度量的Ricci流的一个定理
A theorem of Ricci flow of metric on Riemannian manifold
-
黎曼流形上的弱协变微分与Sobolev空间
Weak covariant differentiation and Sobolev space on Riemannian manifolds
-
黎曼流形的Delaunay三角化和Voronoi图Delaunay三角剖分算法优化的实现
Delaunay triangulation and Voronoi diagrams for Riemannian manifolds Algorithm Optimization and Implementation of Delaunay Triangulation of Three Dimensional
-
黎曼流形上的ROF模型。
The ROF model on Riemannian manifolds .
-
它告诉我们黎曼流形中的测地C的Morse指标等于C上的共轭点的个数(个数按重数计算)。
It tells us in Riemannian manifold , the Morse index of geodesic C equals to the numbers of the conjugate points of C ( 0 ), each counted with its multiplicity .
-
以此算法为基础,将Voronoi图区域划分思想推广到二维黎曼流形。
Based on this method , the area partitioning idea of Voronoi diagram is extended to the application of two-dimensional Riemann manifold .
-
Yano关于具有边界的可定向黎曼流形上的调和和Killing向量场的结果加以推广,显然这个方法也可应用到调和张量场和Killing张量场的情形,这将在另文讨论。
Yano about the harmonic and Killing vector fields in Compact orientable Riemannian spaces with boundary by means of Stokes ' and Green 's theorem .
-
黎曼流形的曲率、拓扑与M(?)bius特性研究
On the Curvature 、 Topology and M (?) bius Characterization of Riemannian Manifold
-
本文证明了在Contact黎曼流形(M.η.g)上,Bochner型曲率张量是Gauge变换的不变量当且仅当对应的Contact-Riemanian结构是可积的。
The purpose of this paper is to prove the Bochner Curvature tensor of Contact Riemannian manifold is an invariant of gauge transformations if and only if the CR-stucture Corresponding to (η,ω) is integrable .
-
利用Jacobi场、Rauch比较定理、核心等概念和定理讨论了完备黎曼流形的若干几何性质。
In the paper , we discuss the geometry of a complete Riemannian manifold by the concepts and theorems of Jacobi field 、 Ranchs Comparison Theorem and Soul etc.
-
其次,利用对合分布与全测地子流形的性质,给出了建立在黎曼流形上的非线性系统的局部能控结构分解,局部能观结构分解和Kalman分解。
Second , we give the local controllability decomposition of structure , the local observability decomposition of structure and local Kalman decomposition for nonlinear control system on Riemannian manifold by using the involutive distribution and totally geodesic submanifold .
-
在能量慢发散的假定下,证明了从欧氏空间到任何黎曼流形的p调和映照的一个Liouville型定理,改进了在能量有限假定下的相应结果。
Under the assumptions of slowly divergent energy , the Liouville theorems for p - harmonic maps from Euclidean space to any Riemannian manifolds are proved , which improved the corresponding results where the finite energy is assumed .
-
具有调和共形曲率的黎曼流形上的Schouten张量及其应用
Schouten Tensor on the Riemannian Manifold with Harmonic Conformal Curvature and Its Applications
-
在本文中我们考察从黎曼流形M到具左不变度量的齐次空间N的带位势的p-调和映射热流,证明存在全局弱解。
In this paper , we prove the existence of global weak solutions of the p-harmonic flow with potential between Riemannian manifolds M and N for arbitrary initial data having finite p-energy in the case when the target N is a homogeneous space with a left invariant metric .
-
本文也表明了在紧致的共形平坦的黎曼流形上,Yang-Mills场存在空隙性。
It is also shown that there is the gap phenomena for Yang-Mills fields on the compact conformal flat Riemannian manifolds .
-
本文证明了黎曼流形上的非爆炸正Harris常返扩散过程的强遍历性等价于某(任)一紧集击中时期望的一致有界性;
It is proved that the strong ergodicity for nonexplosive positive Harris recurrence diffusion processes on Riemannian manifold is equivalent to the uniform boundness of the expectation of the hitting time of some compact set .