机器学习

jī qì xué xí
  • machine learning
机器学习机器学习
  1. 实际统计动物数量的艰巨任务是通过机器学习算法完成的。

    The laborious2 task of actually counting the animals was all done via machine learning .

  2. 从广义上讲,机器学习(MachineLearning)是以使其包括任何计算机程序通过经验来提高其任务处理性能的行为。

    Generally speaking , Machine Learning is the study of computers that improve automatically through experience .

  3. 然后,该系统利用多种机器学习技术进行自我培训,以便以一种近乎即时的方式对众多短文或答案进行自动评分。

    The system then uses a variety of machine-learning techniques to train itself to be able to grade any number of essays or answers automatically and almost instantly .

  4. 预测支持系统中的人机界面Agent及其机器学习

    Interface Agent of Forecasting Support System and Machine Learning

  5. 机器学习在多Agent系统控制决策中的应用研究

    Study of Applications of Machine Learning on Decision and Controlling in Multi-Agent Systems

  6. 统计学习理论(Statisticallearningtheory或SLT)是研究有限样本情况下机器学习规律的理论。

    Statistical learning theory is a small-sample statistics theory .

  7. 在上述研究的基础上采用了户建模、机器学习、WEB网页识别、信息过滤、数据挖掘、人机交互等多项技术。

    Based on these researches we adopt user model , machine learning , webpage distinguish , information filter , data mining and man-machine interaction etc.

  8. 支持向量机(supportVectorMachine,SVM)是机器学习界的研究热点,并在很多领域都得到了成功的应用。

    Support Vector Machine ( SVM ) is a hotspot in machine learning field and has been successfully applied in different fields .

  9. 应用机器学习于Chi平方密写分析的研究

    Applying Machine Learning to Chi-square Steganalysis : A Case Study

  10. 数据挖掘(DATAMINING)是智能化信息处理中一个很有价值的课题,它融合了数据库、人工智能、机器学习和统计学等多个领域的理论和技术。

    Data Mining is a significant research field in the Intelligence Information Process . It fuses the theory and technology of database , artificial intelligence , machine study and statistics .

  11. 这种新的机器学习方法,既利用了PCA降噪的特性,又具有经典SVM泛化能力强、分类快的特性。

    This new method has both the obvious de-noising ability from PCA and the generalization from SVM .

  12. 介绍了采用面向对象技术,结合专家系统、CAD技术及机器学习的理论和方法,在VC++6.0环境下,开发了搅拌反应釜智能CAD系统。

    The development of the intelligent CAD system about stirred bed reactor is introduced with object-oriented technology , expert system , CAD and machine learning .

  13. 机器学习作为一种成熟的DSP技术,将其延伸到数字信息处理中来具有重要的研究价值。

    It has the important research value that people applies the machine learning as one kind of mature DSP technology in digital information processing .

  14. 每个星期,他们在Hadoop科研集群上重新计算他们关于类别的机器学习模式

    Every week they recompute their machine learning models for categories in a science Hadoop cluster

  15. L1语言是为开发机器学习系统而研制的。本文在分析了机器学习系统的特征以后,讨论L1语言所设置的知识库系统LIKBS。

    In this paper , a Knowledge Base System L1 KBS of L1 Language is discussed .

  16. 集成学习(EnsembleLearning)是为某个问题训练一组学习器,并将这些学习器联合起来执行一定预测任务的一种机器学习技术。

    Ensemble Learning is a machine learning technique which trains a group of learner for a practical problem , and joins those learners together to execute the prediction task .

  17. 实验数据集同样来自UCI机器学习库中随机抽取的数据集。

    The experiment data set are also from the UCI machine learning repository .

  18. 可满足性问题(SAT问题)在数理逻辑、人工智能、机器学习、约束满足问题、VLSI集成电路设计与检测以及计算机科学理论等领域具有广阔的应用背景。

    The satisfiable ( SAT ) problem plays an important role in artificial intelligence , machine learning , mathematical logic , VLSI design and detection other areas .

  19. 强化学习RL(Reinforcementlearning)算法作为机器学习一个新的分支,由于其本身的特点,很适合用来设计Agent的学习。

    Reinforcement Learning ( RL ) is a new branch of machine learning and because of its feature it is proper to be used to design an agent that learns from experience .

  20. 使用了两种机器学习算法一Bayes算法、改进Bayes算法实现了网页识别,并对两种机器学习算法的效果进行了实验分析。

    We carry out the recognizing by two methods & Bayes algorithm and improved Bayes algorithm , and analyse the result from the two machine learning algorithms .

  21. 本文的主要工作以目标检测为中心,围绕机器学习和视频分析两大模块进行设计与实现,机器学习模块主要完成了HOG特征提取和训练SVM分类器设计和实现。

    Targets detecting , which is the main work of this paper , centered on designing and implementing of two modules , machine learning and video analysis .

  22. 特征子集选择问题是机器学习的重要问题.而最优特征子集的选择是NP困难问题,因此需要启发式搜索指导求解。

    The feature subset selection is an important problem in machine learning , but the optimal feature subset selection is proves to be a NP hard one .

  23. Co-Training的机器学习方法在中文机构名识别中的应用

    The Application of the Method of Co-Training in Identification of Chinese Organization Names

  24. 许多先进的人工智能技术如机器学习、知识表示、自然语言处理、模式识别、遗传算法及分布式智能系统都被融入DSS的研究中。

    Lots of advanced AI techniques such as machine learning , knowledge representation , pattern identification , genetic algorithms and distributed intelligent systems have been applied to the research ofDSS .

  25. 在机器学习领域中,IB方法多用于模式提取,并形成了多个版本的IB算法。

    In the field of machine learning , IB method is used for pattern extraction , and many researchers proposed multiple versions of IB algorithm .

  26. 应用满足Mercer条件的核函数设计非线性算法已经成为机器学习领域一项新的非线性技术。

    Designing nonlinear algorithms with kernel functions satisfying the Mercer condition , has become a novel nonlinear technique in the machine learning .

  27. 本文通过对著名站点Yahoo层次结构的分析,介绍一种基于此层次结构的文档分类器的机器学习技巧。

    By the analysis of the hierarchy structure for the famous web site Yahoo . This paper introduces a technique of machine learning for document classifier based on the hierarchy structure for Yahoo .

  28. 支持向量机(简称SVM)是一种将统计学理论付诸实现的有效机器学习方法,基于结构风险最小化准则(structureriskminimization即SRM),采用经验风险和置信范围两项同时最小化的风险泛函。

    Support Vector Machine is a kind of powerful learning method which put Statistical Learning Theory to use . It is based on structure risk minimization ( SRM ), use the risk function to minimize experiential risk and trust scope .

  29. 通过对UCI机器学习数据库中5个数据集的约简验证了方法的有效性和可行性。

    The validity and feasibility of the proposed method are demonstrated by attribute reductions on five data sets from UCI machine learning database .

  30. 机器学习中的多侧面递进算法MIDA

    A Multi-Side Increase by Degrees Algorithm at Machine Learning