太阳帆板

  • 网络solar arrays
太阳帆板太阳帆板
  1. 抑制卫星太阳帆板振动的H∞鲁棒控制设计

    Robust Control of Suppressing Vibration on Solar Arrays

  2. 太阳帆板绳索联动同步机构的机理和功能分析

    The research on principle and function of closed loop configuration of solar arrays

  3. 太阳帆板振动对星载CCD相机成像的影响

    Influence of array elasticity vibration on CCD image

  4. 基于ADAMS航天器太阳帆板展开与锁定动力学仿真

    Dynamics simulation of deployment and locking of spacecraft solar panel using ADAMS

  5. 提出了一种基于分段Lyapunov函数方法的带太阳帆板柔性卫星的姿态模糊控制方法。

    A fuzzy attitude control based on subsection Lyapunov method for flexible satellites with solar paddles was proposed .

  6. 对带有单轴驱动挠性太阳帆板及新型挠性太阳帆板驱动机构的卫星分别设计挠性卫星振动控制律,利用Matlab进行仿真分析。

    The vibration control rules of flexible satellites with the two flexible solar array driving mechanism were designed , the simulation was run on MATLAB . The control laws were designed .

  7. 针对一个中心刚体+两个对称安装的太阳帆板的挠性航天器,用Lagrange方法建立了系统的动力学模型,并在此基础上给出了用于设计控制规律的简化模型。

    Based on Lagrange 's method , the flexible spacecraft with a rigid center hub and two identical flexible appendages is modeled . And the model is simplified for control .

  8. 利用STK软件的输出数据,分析并仿真了不同轨道倾角和高度卫星的太阳帆板和本体外表面的温度特性。

    By using the output data of the STK software , the temperature characteristics of the solar panels of the satellites at different inclinations and altitudes are analyzed and simulated .

  9. 最后,以带有太阳帆板的复杂卫星系统为例,对MDAS软件的合理性、有效性和正确性进行了分析验证。

    It can perform dynamic computing , data processing , and visual simulation of multibody system . Complex satellite with solar panels is taken as an example and the results show the validity and correctness of MDAS software .

  10. 实际测量结果表明,该测量系统对面积为2581mm×1755mm太阳帆板的平面度测量精度达0.02mm(RMS)。

    The actual measurement results show that the measurement accuracy 0 02mm ( RMS ) can be obtained when a solar panel substrate ( 2581mm × 1755mm ) planeness is measured by using of this measuring system .

  11. 带挠性轴太阳帆板航天器姿态动力学研究

    Attitude dynamics of solar wings on spacecraft with a flexible shaft

  12. 太阳帆板平面度测量系统的误差补偿方法

    An error compensation method for solar panel substrate planeness measuring system

  13. 基于形状记忆合金的太阳帆板的变结构控制

    Variable Structure Control of Solar Panels Based on Shape Memory Alloy

  14. 基于光学三角形法的太阳帆板平面度测量系统

    Planeness measuring system of solar panel substrate by an optical triangulation method

  15. 航天器太阳帆板展开过程的最优控制

    Optimal control of stretching process of solar wings on spacecraft

  16. 太阳帆板展开期间卫星动力学数字模拟

    Digital Simulation of the Satellite Dynamics During Solar Array Deployment

  17. 含铰间间隙太阳帆板展开动力学仿真

    Dynamics simulation of deployment for solar panels with hinge clearance

  18. 太阳帆板驱动中堵转现象的分析

    Study on the Block Phenomenon in Solar Array Driving System

  19. 带太阳帆板航天器刚柔耦合动力学研究

    Research on Rigid-Flexible Coupling Dynamics of Spacecraft with Solar Panel

  20. 一种基于虚拟基准的太阳帆板平面度测量仪

    A Solar Panel Substrate Flatness Measurement Instrument Based on Virtual Datum Plane

  21. 太阳帆板振动诱导空气流场分析及其附加质量计算

    Analysis of Air Flow and Added Mass Induced by Vibration of Solar Array

  22. 在轨发动机羽流污染导致太阳帆板电功率损失计算模型

    Loss model of solar array power caused by rocket motor plume flow contamination

  23. 太阳帆板的遮挡分析是航天器电源分系统方案设计的基础。

    Current status of solar sail propulsion and analysis of its key techniques ;

  24. 太阳帆板是航天器的主要供能系统。

    The solar panels are the main energy supply system of the spacecraft .

  25. 万有引力场中带挠性轴太阳帆板航天器的姿态稳定性

    Attitude stability of solar wings on spacecraft with a flexible shaft in gravitational field

  26. 带挠性轴太阳帆板与航天器中心刚体耦合动力学研究

    Couple Dynamics of Solar Wings and the Central Rigid Body on Spacecraft with Flexible Shaft

  27. 太阳帆板功率损失的计算考虑二者的综合影响。

    The total solar array power loss is calculated considering the two effects in combination .

  28. 制作了太阳帆板小模型,进行了展开试验。

    It also presents the making of the solar array model and the experiments of unfolding .

  29. 对卷尺弹簧驱动太阳帆板展开运动进行了分析。

    It has the analysis of the unfolding of the solar array driven by combined hinges .

  30. 以太阳帆板展开过程中航天器姿态控制为例,作了计算机仿真。

    Satellite attitude control during deployment solar panels as an example , simulation on computer is performed .