射影

shè yǐng
  • projection;evil spirit;demon
射影射影
射影 [shè yǐng]
  • (1) [projection]∶从一点向一条直线或一个平面作垂线,垂足就是这个点的射影。一条线段上的各点的射影的连线就是这条线段的射影

  • (2) [evil spirit;demon]∶古书上指蜮,因为据说蜮这种动物能含沙喷射人影使人致病。射影也是蜮的别名

射影[shè yǐng]
  1. 点在k维平面上的射影及点到k维平面的距离

    The projection of a point on a k-dimensional plane and the distance from a point to a k-dimensional plane

  2. 提出了将射影平面叠加到AUTOCAD绘图板上并进行电子非欧几何作图的思想和方法;

    The concept and method of adding a projection plane to AUTO CAD drawing-board and drawing non-Euclidean geometry graph on the board are discussed .

  3. m元射影函数n次迭代根的存在性

    The n-order iterative roots of m-dimension projective function

  4. G5作用下的上同调复射影空间

    Cohomology Complex Projective Space with Actions of G 5

  5. 利用2D射影变换求解空间复杂结构的3D不变量

    Computing 3D invariants of complicated spatial structures by using 2D projective transformation

  6. 复射影空间的复叶层三层复合板的r值研究

    Complex Foliations on a Complex Projective Space Study on Lankford ( r ) of Three-Layer Composite

  7. 有理Bézier曲线的权因子与参数射影变换

    Parametric Projective Transformation and Weights of Rational B é zier Curves

  8. Hilbert空间H上的正则射影对

    Regular pairs of orthogonal projections in a Hilbert space H

  9. 利用2-D射影变换实现多视图下元素的预报

    Predicting image elements using 2-D protective transformation from multiple views

  10. 弱射影与DeMorgan代数的同余关系

    Weak projectivity and congruence of De Morgan Algebra

  11. 区传递的2-(v,k,1)设计与射影辛群PSpn(q)

    Block transitive 2 - ( v , k , 1 ) designs and projective symplectic groups PSp_n ( q )

  12. 在n维射影空间Pn中,给出了用帕普斯定理来证明德萨格定理的另一个方法。

    Give a method to prove Desargues Theorem with Pappus Theorem on n-dimensional projective space P ~ n.

  13. 主要利用了三角形法计算3D特征点,然后利用分层重构的理论将射影结构提升到度量结构。

    We use the triangle method to compute the characteristic points , and then updating the projective construction to measurement construction which using the theory of stratum .

  14. 首先,从射影几何的角度出发,介绍了2D射影矩阵,给出求解该矩阵的求精算法;

    First , we inducted the homogeneous matrix using projective geometry , and derived the appropriate algorithms to solve this matrix .

  15. 对于有理二次Bézier曲线,两条有理二次Bézier曲线间的射影变换由它们对应的控制顶点和权因子所确定。

    Projective transformation between two rational quadratic B é zier curves is determined by pairs of corresponding control vertices and weights .

  16. 给出了射影空间Pn中配极变换的一个化简公式并指出它的应用。

    This paper is gives a simplified formula of polar transformation in projective space pn and peints out its use .

  17. 进一步利用3D不变量和2D射影变换,实现了一定条件下的对称性目标的形状恢复技术。

    Further more , by using 3D invariants and 2D projective transformation , an approach to recover shape from part symmetry objects is realized on some conditions .

  18. 只是运用射影几何的性质,通过简单的几何关系,对非标定单摄像机拍摄的单幅图像,求解其从2D图像平面到真实的3D平面的非线性单映射关系。

    The nonlinear mapping between 2D image plane and the plane in the 3D world is conformed depending on property of projective geometry and relation of geometry .

  19. 复射影空间中复子流形的整体Pinching定理

    Overall Pinching Law of Complex Submanifolds in Complex Projective Spaces

  20. 浅析Pascal定理在射影几何中的地位和作用&兼谈对编写射影几何教材的一点建议

    The Analysis of the Function and the place of Pascal Theorem in projective Geometry

  21. Banach空间上射影算子的Bool代数

    Boolean algebra of projective operators in Banach space

  22. 在得到序列图像的匹配结果后,将传统基于仿射成像模型的测量矩阵(MeasurementMatrix)保秩分解算法扩展到透视成像模型中,从而一次性得到整个场景的射影重建;

    After getting the matching results across the whole sequence , an extension of rank fitting decomposition method for the measurement matrix used in affine model to perspective case was used to get the projective reconstruction .

  23. 另外,在射影重建的因子化方法中,由射影深度缩放的测量矩阵位于一个4D子空间中。

    The scaled measure matrix lies in 4-dimension subspace in factorization method for projective reconstruction .

  24. 本文首先定义了n维实射影空间pn;pn上的平面、直线及射影映射。

    This paper first defines n dimensional real projective space p n , then defines plane and lines and projecting mapping on the p n.

  25. 关于Suzuki群与射影平面的一个注记

    Suzuki Group and Projective Plane

  26. 局部对偶平坦且局部射影平坦的Finsler度量

    Finsler Metrics of Local Dual Flat and Local Projective Flat

  27. 在射影空间Pn中不存在度量概念,不能像欧氏空间En那样用度量概念来定义对称变换.借助于射影空间Pn中的无穷远点、调和分割和射影交换,给出了。

    There exists no metric conception in projective space Pn . Therefore , symmetric transformation can not be defined by metric conception in Euclidean space En .

  28. 共形而且射影平坦的Finsler空间

    A Conformally Flat and Projectively Flat Finsler Space

  29. 研究了一种快速的基于正交射影法的空间点拾取技术并对ICP算法进行了改进。

    This paper studies a kind of rapid collecting point technology " based on orthogonal projection method " and made the improvement to the ICP algorithm .

  30. 关于某些特殊的射影平坦Finsler度量

    On Some Special Projectively Flat Finsler Metrics