星际介质

  • 网络Interstellar Medium;ISM
星际介质星际介质
  1. 超高能宇宙线电子在星际介质中的传播

    The propagation of EXTRA-RELATIVISTIC cosmic ray electron in the interstellar medium

  2. 星际介质中的磁场&观测与结果

    The Magnetic Field in Interstellar Medium

  3. 与星族Ⅰ恒星相反,贫金属的星族Ⅱ的F和早型G型矮星大气锂丰度弥散很小,且其丰度比年轻的星族Ⅰ恒星和星际介质锂的丰度约低一个量级。

    In . contrast with Pup I stars the Li abundances of Pup ⅱ F - and early G-type dwarfs show a very small dispersion and they are about an order of magnitude smaller than the value of the young Pup I stars .

  4. 激波在行星际介质中的能量耗散

    The energy deposition of a MHD shock in the interplanetary medium

  5. 宇宙线在星际介质中的传播&路径长度,居留时间和寿命

    The propagation of cosmic rays in interstellar matter : pathlength , residence time and age

  6. 脉冲星PSR2217+47的折射闪烁和星际介质电子密度的涨落谱

    Refractive Interstellar Scintillation of PSR 2217 + 47 and the Spectrum of Electron Density Fluctuations

  7. 星尘与星际介质混合在一起,最终形成了岩石状的类地行星,例如我们的地球。

    Mixing with the interstellar medium , the dust could ultimately form rocky terrestrial planets like Earth .

  8. 过去的十几年里,有关星际介质的较密气尘复合体我们探明了哪些新东西呢?

    What new information have we gleaned about the comparatively dense gas-dust complexes of the interstellar medium over the past dozen years ?

  9. 恒星是由一种称为星际介质的原汤形成的。火星对未来的星际旅客说有着特殊的魅力。

    Stars are born from a kind of primal soup known as the interstellar medium . Mars has an extraordinary fascination for would-be voyagers .

  10. 简单的物理学定律揭示出,星际介质中的气尘复合体可以进化,先是演化为原恒星,接下去再演化为恒星。

    Simple laws of physics suggest , that gas-dust complexes in the interstellar medium may evolve , first into protostars and subsequently into stars .

  11. 本文用超新星爆发产生的原初宇宙线电子在星际介质中的均匀扩散模型来研究空间各点的非定态电子能谱。

    Non-steady state electron spectrum in interstellar medium is investigated by using the model of isotropic diffusion of primary cosmic electrons originated from explosion of supernovae .

  12. 这个时间差依赖于信号在星际介质中传播的路程:路程越长,时间差越大。

    This time-lag depends on the distance the signal has traveled through the interstellar medium : the longer the distance , the greater the time lag .

  13. 我们正在深入研究太阳系周边星际介质与日球层的相互作用,这样一幅太空图像意义重大。

    The sun 's presence affects the local interstellar magnetic field , bulging the field out to form something larger that is similar to a subway station .

  14. 脉冲星计时是研究时间科学、中子星物理、星际介质及双星系统等领域的重要手段之一。

    Pulsar timing has turned millisecond pulsars into powerful tools for the study of time keeping , neutron star physics , the interstellar medium and binary systems .

  15. 星风普遍地存在于各种类型的恒星中,对恒星的演化、星际介质等有巨大的影响。

    The Stellar Wind is common in every kind of stars , and has a great impact on Stellar Evolution , Interstellar Medium , and so on .

  16. 在我退休之前,“航行者”号上的法拉第筒极有可能会直接测量到星际介质中的等离子体。

    And there 's an excellent chance that , before I retire , the Faraday cup on Voyager will directly measure the plasma in the interstellar medium .

  17. 应用电子计算机计算了太阳宇宙线在均匀并无限的行星际介质中传播的各向异性扩散对流方程的量纲分析解。

    Computer calculations have been made on the dimensional solution to the anisotropic diffusion convection equation for solar cosmic rays propagating in an uniform and unbounded interplanetary medium .

  18. 电离层与日一地系统的其它区域,包括太阳、行星际介质、磁层、热层和中层之间存在着强烈地耦合相互作用。

    The ionosphere is strongly coupled with the other regions in the solar-terrestrial system , including the sun , the interplanetary medium , the magnetosphere , the thermosphere , and the mesosphere .

  19. 星际湍流介质中二阶矩方程的数值差分方法及其应用

    The numerical difference method of the second moment equation in an interstellar turbulent medium and its application

  20. 星际闪烁现象和星际介质的深入理解,使脉冲星星际闪烁已成为研究诸如脉冲星辐射区结构和脉冲星速度等脉冲星本身性质的重要工具。

    The progress on determining distribution of scattering plasma in the galaxy , resolving pulsar emission region and measuring pulsar velocities based on interstellar scintillation are also described .

  21. 再者可以研究Be星的存在与星际磁场或湍流的星际介质是否有关;

    Third , it may study the relation of the existence of Be stars with stellar magnetic fields in the interstellar median ;