特征值和特征向量

  • 网络Eigenvalues and eigenvectors
特征值和特征向量特征值和特征向量
  1. 最后一章我们给出了解决流体力学问题的数值方法,内容包括雅可比矩阵特征值和特征向量的计算、通量的分裂及理想气体状态的Euler方程的混合格式。

    These include analytical eigenvalues and eigenvectors of the Jacobian matrix , flux splitting and the hybrid scheme for solution of Euler equations using real gas state laws .

  2. 在80年代,图论的新的发展使得人们清晰地认识到,Laplace矩阵的特征值和特征向量比较邻接矩阵能够更自然地进入应用理论领域。

    New developments in the 1980s made it clear that eigenvalues and eigenvectors of the related Laplace matrices of graphs enter the theory in several applications more naturally than those of adjacency matrices .

  3. 首先构造修正的Hessian矩阵,计算其特征值和特征向量。

    Firstly , the modified Hessian matrix was constructed .

  4. 利用时域有限差分(FDTD)法对变压器绕组的暂态电压分布进行了数值计算,并与传统的广义特征值和特征向量计算方法进行了比较。

    The over-voltages in winding are solved by using finite different time domain ( FDTD ) method . Comparison between MTL and traditional method are given .

  5. 引入了奇异值分解(SVD)定理解决PCA方法在特征值和特征向量计算量大的问题。

    In order to solve the problem about large calculation of eigenvalue and eigenvector in PCA method , we introduce the singular value decomposition ( SVD ) theorem .

  6. 通过对n阶矩阵的特征值和特征向量的研究,针对n阶矩阵的特征值和特征向量的应用进行了3个方面的探讨,并给出了相关命题的证明及相应的例题。

    By the studying of eigenvalue and eigenvector of matrix , this article discusses the application of their three aspects due to eigenvalue and eigenvector of matrix . And also , the demonstration of interrelated proposition and the relevant examples are introduced .

  7. 由于PCA方法需要将图像由二维矩阵转化成一维向量,构造出维数巨大的协方差矩阵,并求解其特征值和特征向量,计算量巨大而且复杂。

    The PCA method requires changing the image from the two-dimensional matrix into a one-dimensional vector , then constructs the covariance matrix which has a huge dimension , and calculates the eigenvalues and eigenvectors , which is very complex .

  8. Meschach可以解稠密或稀疏线性方程组、计算特征值和特征向量和解最小平方问题,另外还有其它功能。

    Meschach was designed to solve systems of dense or sparse linear equations , compute eigenvalues and eigenvectors , and solve least squares problems , among other things .

  9. 行列式查找法是计算大型稀疏矩阵广义特征值和特征向量的有效方法之一,其理论基础是对称矩阵的各阶顺序主子阵的特征行列式形成Sturm序列。

    Determinant Research Method is one of the effective methods for calculating the generalized eigenvalues and corresponding eigenvectors of a large sparse matrix . Its theoretical foundation is that for a symmetric matrix the leading principal minors of the eigenmatrix form a Sturm Sequence .

  10. 本文对Q-485柴油机缸体三维振动动态特性的分析,选用有限元数值计算和试验模态分析两套方案:前者运用子空间迭代法计算特征值和特征向量;

    Both numerical calculation by finite element method and test modal analysis are used to analyze dynamic characteristics in vibration of Type Q-485 Diesel cylinders , and subspace iteration method to calculate eigenvalues and eigenvectors in the method .

  11. 这里线性表示的系数矩阵称为相伴矩阵,进而将问题转化为求解相伴矩阵的特征值和特征向量的问题。

    Here the representing coefficient matrix is called associated matrix .

  12. 四元数矩阵的特征值和特征向量

    The Characteristic Value and Its Vector of Quaternion Matrix

  13. 随机结构系统的特征值和特征向量分析

    Eigenvalues and eigenvectors analysis of random structure systems

  14. 布尔矩阵的特征值和特征向量

    The eigenvalue and eigenvector of Boolean matrix

  15. 振动系统特征值和特征向量的&阶导数

    Eigensolution derivatives in vibration systems

  16. 广义特征值和特征向量在变压器绕组波过程计算中的应用

    The Application of Generalized Eigenvalue and Eigenvector in the Calculation of Transient Oscillations in Power Transformer Windings

  17. 由于确定大规模矩阵的特征值和特征向量是一个需要大量内存并且耗时的处理过程,单处理机已经无法承受。

    It is impossible to define large-scale eigenvalue and eigenvector with uniprocessor because it is a time-consuming process .

  18. 通过求解系统的特征值和特征向量问题,得到系统的各阶固有频率和主振型。

    The natural frequencies and the principal modes of system are present by solving the eigenvalues and the eigenvectors .

  19. 在计算过程中应用了潮流方程特征值和特征向量灵敏度系数的计算。

    Eigenvalue and eigenvector sensitivities are introduced into the analysis of power flow equations and employed to the boundary approximation .

  20. 为求解大型稀疏矩阵对的部分特征值和特征向量,介绍了一种高效的同时迭代方法。

    An efficient simultaneous iteration method is introduced to solve some eigenvalues and eigenvectors of the large sparse matrix pairs .

  21. 首先计算固定界面下,船体的振动特征值和特征向量;

    The eigenvalue and eigenvector of the hull under the condition of fixed boundary are , first of all , calculated .

  22. 本文利用数学定理和新的灵敏度定义给出特征值和特征向量导数的精确解。

    The exact solution of derivatives of eigenvalue and eigenvector is presented by utilizing the mathematical theorem and new definitions of sensitivities .

  23. 建立了利用矩阵特征值和特征向量构造短序列正交多子波的方法。

    A method for determining the associated multiwavelets from a class of multi-scaling functions using eigenvalues and eigenvectors of matrices is proposed .

  24. 本文方法能够计算超大型结构特征值和特征向量,计算效率高,消耗计算机资源少,稳定性高。

    The proposed method is able to solve the eigenvalues of super large-scale structures with high efficiency , less computational cost and robust stability .

  25. 该算法的设计目标是使闭环特征值和特征向量所满足的方程组关于参数摄动误差为最小。

    The design criterion for the algorithm is to minimize the error in the set of equations which govern the closed-loop eigenvalues and eigenvectors .

  26. 本文给出了通过λ-矩阵的初等变换,同时求得特征值和特征向量的一种方法。

    In this paper , well construct a new approach to simultaneously solve eigenvalue and eigen-vector , by elementary operation of λ - matrix .

  27. 给出能同时得到主成分分析或小成分分析所要求的特征值和特征向量的实时算法。

    A new online coupled algorithm for PCA and MCA which can simultaneously extract the eigenvectors and eigenvalues of the covariance matrix with coupled iterations is obtained .

  28. 在模态空间中,特征值和特征向量的配置是分开进行的,在特征值进行精确配置的同时,可以将特征向量进行参数化表示。

    In the modal space , the eigenvector assignment and eigenvalue assignment are carried on separately . While eigenvalues are assigned accurately , the eigenvectors are expressed with parameter .

  29. 该方法是在采用输出反馈配置系统的闭环特征值和特征向量的同时,引入了前馈补偿器和积分器。

    The method adopts output feedback to assign the eigenvalue and eigenvector of the closed loop system , and at the same time it introduces a feedforward compensator and an integrator .

  30. 利用线性多部门经济系统的投入矩阵的特征值和特征向量的性质来研究宏观经济系统的经济周期问题,并提出了经济周期的长度与系统开放程度成正相关关系。

    In this paper . we studied the problem of economic cycles on the macroeconomic system with the properties of eigenvalues and eigenvectors of the input matrix on linear multi sector economic system .