特征多项式
- characteristic polynomial
-
当行列式展开后,得到一个多项式,叫它为特征多项式。
When the determinant is expanded , it produces a polynomial , called the characteristic polynomial .
-
n圆盘系统的固有频率的特征多项式
The characteristic polynomial of the natural frequency of n - circular disk system
-
有限域Fq上轮换矩阵的特征多项式与极小多项式
The Characteristic Polynomial and the Minimal Polynomial of Circulant Matrix on F-q
-
使用PID控制器的2-D奇异系统特征多项式配置
Characteristic Polynomial Assignment of 2-D Singular Systems Using PID Controllers
-
2-D奇异系统特征多项式与剩余多项式的区域配置
Characteristic Polynomial and Residual Polynomial Region Assignment for 2-D Singular Systems
-
对等惯、等轴性且具有固定端的n圆盘系统的特征多项式进行了分析。
This paper analyses the characteristic polynomial of the n-circular disk system with same inertia , with same axis properties and with fixed ends .
-
2-D广义系统的特征多项式配置
Characteristic Polynomial Assignment of 2-D Singular Systems
-
n符号动力学n-1超稳揉序列揉特征多项式
The Kneading Characteristic Polynomial for n-1 Superstable Kneading Sequences in Symbolic Dynamics of n Letters
-
研究2-D奇异系统Roessor模型特征多项式配置问题。
The paper considers the problem of characteristic polynomial assignment of 2-D singular systems using dynamic feedback .
-
典型矩阵值Wiener泛函的特征多项式
Characteristic Polynomials for Typical Matrix-Valued Wiener Functionals
-
本文对一类具有对称轴的图An(n≥0),得到了它的特征多项式及匹配多项式的精确表达式;同时还得到A(?)
For a class of graphs , see Fig 1 denoted by A_n , with an axis of symmetry , we obtained its explicit expressions of characteristic polynomial and matching polynomial .
-
讨论了含有n(n≥3)个物种的反应扩散系统的扩散驱动不稳定性,通过分析其线性化矩阵特征多项式的零次项,得到了系统产生扩散驱动不稳定性的一个必要条件。
A necessary condition for diffusion-driven instability of n-species ( n ≥ 3 ) of a reaction-diffusion system is concluded by analyzing the zeroth order term of eigenpolynomial of linearized matrix .
-
本文给出了LQ最优控制系统的极点(或特征多项式)与加权阵Q、R必需满足的某些重要关系式。
In this paper , some necessary supply important relationships for the poles ( or eigenpolynomial ) of LQ optimal control system are presented .
-
提出了相位测量轮廓术(PMP)中相移算法的一种设计方法:特征多项式法。
A method is proposed that used the characteristic polynomials to design phase-shifting algorithms .
-
据该公司的广告宣称,如果您需要计算Q上的400x400矩阵的特征多项式,那么您就需要Fermat。
And as the company advertises , if you need to compute the characteristic polynomial of a400 x400 matrix over Q , you need Fermat .
-
道路多项式Pk(λ)是上,下对角线元素是1,其它元素为0的k阶方阵的特征多项式,k≥1;
The path polynomial P k (λ), k ≥ 1 , is the characteristic polynomial of the tridiagonal matrix with 1 ′ s on the super and subdiagonals and zeros elsewhere ;
-
首先推导出从对象至GPC闭环系统特征多项式的系数映射关系,在此基础上分析了在一定设计参数选择条件下GPC算法的稳定性问题。
By using the coefficients of mapping relationship between plant and closed-loop characteristic polynomial , the conditions on zero coefficients of characteristic polynomial are analyzed .
-
几类图的SignlessLaplacian特征多项式
Signless Laplacian characteristic polynomial on several types of graphs
-
通过并行故障仿真检验测试矢量集的故障覆盖率,并压缩测试矢量集,然后将电路响应序列Q移入特征多项式求得特征R,由此建立故障字典。
Fault coverage of test vectors are detected through parallel fault simulation , test vectors are compacted , then character sequences are obtained through shifting response sequences to character multinomial , in conclusion fault dictionary is built .
-
Hessenberg矩阵的特征多项式及其它
The characteristic polynomial of a matrix of Hessenberg type
-
通过二端口网络的ABCD传输矩阵与特征多项式之间的关系,得到滤波器网络的传输矩阵。
Finally , we may get the transmission matrix of the filter network through the relationship between the ABCD transmission matrix and the characteristic polynomials . 1 .
-
文中同时指出了由Sinclair散射矩阵还原目标散射矩阵,从而获得特征多项式的逆变换过程。
In the meantime , it shows clearly the inverse process of getting the eigenvalue polynomial from converting the Sinclair scattering matrix into the generalized scattering matrix .
-
本文从LQ逆问题着眼提出了一种新的最优极点配置方法,推导了加权矩阵Q和R与开环特征多项式、最优闭环特征多项式之间的关系。
In this paper , a new method for optimal pole assignment is presented from the viewpoint of the LQ inverse problem . The relationships among the weighting matrices Q and R and the open-loop and optimal close-loop characteristic polynomials are derived .
-
给出了T的幂仍就是最大线性正形置换的充分条件,证明了T的特征多项式为F2上的本原多项式,进一步证明了Fn2为T的不可约空间。
The conditions that the power of T is still maximal linear orthomorphisms are given ; It is proved that the characteristic polynomial of T is primitive polynomial , and that F ~ n_2 is the irreducible sub-space of T.
-
给出了M矩阵,N0矩阵的一些不等式,并证明某些不等式等式成立的充要条件,推广了文献中F0矩阵的一个不等式,并给出了Z矩阵的特征多项式系数的一些不等式。
Some inequalities on M-matrix and N_0-matrix are extended , and this paper proves necessary and sufficient conditions of some inequalities , a inequalities on F_0-matrix is advanced . Some inequalities about coefficient of characteristic polynomial of Z-matrix are given .
-
其次,给出了单输入的2-D系统一般模型和2-D广义系统Roesser模型的特征多项式的配置和反馈增益矩阵的确定的方法,并指出该方法对有并矢结构的多输入控制系统同样适用。
In addition , the algorithms of assigning the characteristic polynomial and finding the feedback gain matrix of 2-D system general model and 2-D singular Roesser model with single-input are investigated , respectively . They are also available for multi-input control systems with dyadic structure .
-
然后通过应用Routh算术求得合理的状态反馈矩阵,使得不确定向量在给定范围内任意变化时变参数闭环线性系统的特征多项式恒为Hurwitz多项式,从而使该线性系统稳定。
Then the Routh algorithm is used to select the appropriate state feedback matrixes so as to make the characteristic polynomials of the closed loop linear systems be Hurwitz polynomials , while the uncertain variable within variable within their given scopes arbitrarily .
-
在此基础上指出了Sinclair双站散射矩阵是散射变换在两个不同坐标系下交叉构成的,是散射变换的非自同态矩阵,它不能直接确定散射变换的特征多项式。
Then , it is proved that Sinclair scattering matrix is based on a cross process in two different coordinates , i. e. , it is a non-common-basis-state matrix of the scattering transformation , it can not determine the eigenvalue polynomial of this scattering transformation .
-
研究离散线性时不变系统的特征多项式的鲁棒稳定性,给出用求多项式最小值的方法来估计SchurCohn多项式的鲁棒稳定半径,在一定条件下估计为最优估计。
This paper investigates the problem of the robust stability about character polynomial of a discrete-time linear time invariant system , estimates the radius of robust stability of Schur-Cohn polynomial based on seeking minimum value of polynomial , and it is the best estimation in some conditions .
-
具有同一特征多项式的矩阵相似类的计数
Enumeration for Equivalence Classes of Matrices Having the Same Characteristic Polynomial