群范畴
- 网络group category;category of groups
-
Abel群范畴是一个Abel范畴,在这个范畴中,两个子对象的交就是两个子群的交,两个子对象的并是由两个子群的并生成的子群。
Abel group category is an abel category . In this category , the intersection of two subobjects is the intersection of two subgroups and the union of two subjects is the subgroup generated by the union of two subgroups .
-
群范畴中的自由对象及其生成元集
A free object and its generators set in group category
-
将Abel范畴所得的正合关系式应用于Abel群范畴中,就得到一些关于子群的交、并和直和之间的群的同构关系式,在交换群中推广了群的同构定理。
The exact sequences we get in Abel category induce some isomorphism relations of Abel groups .
-
设H为有限Hopf代数,B为交换环,H0为交换、余交换的有限Hopf代数范畴,C为交换环范畴,A为交换群范畴。
Let H be a finite Hopf algebra , B a commutative ring , H 0 the category of all commutative , co-commutative finite algebra , C the category of commutative rings and A of commutative groups .
-
并说明在有限生成的阿贝尔群范畴内F-同构是一等价关系,否则不然。
We also consider the Five Lemma in the case of F-isomorphism and F & exactness , It is shown that in the category of finitely generated abelian groups the F-isomorphism is an equivalent relation but is not true out of this category .
-
为此本论文首先界定城市群概念、范畴及进行相关研究综述,再分析世界城市化发展态势及对国内城市群进行比较研究,从而在更广阔的视角上分析成渝城市群。
This paper defined concepts , scope and associated research , and then analyzed world development trend of urbanization and comparative study of domestic .
-
本文将经典的对称群和模糊对称群溶为一体,提出一种新的代数结构&CF对称群范畴,并从范畴论的角度出发,给出了对系统进行统一描述的方法。
With classical symmetric group and fuzzy symmetric group of mix together for integral whole , this paper set out a new algebra construction-the CF the category of symmetric group , and from the category give classic out method towards system proceed unify describe .
-
据此,本文试探性地提出了水词群的认知模型,并考虑到文化模型对认知模型的影响,对水词群的范畴化过程进行总结。
Based on this , the thesis tentatively puts forward a cognitive model of WATER , considering the influence of cultural model .