群代数
- group algebra
-
关于半正定群代数元的注记
Note on positive semi - definite elements of the group algebra
-
基于群代数元的广义矩阵函数
Generalized Matrix Functions Based on Elements of The Group Algebra
-
半群代数中理想FA良序基的构造
The Construction of Well Arranged Basis for Idea F_A in Semigroup Algebra
-
最后,我们来看一下对偶的情形,弱Hopf代数是有限广群代数的对偶。
Finally , we look at the dual situation , where the weak Hopf algebra is the dual of a finite groupoid algebra .
-
半群代数理论是代数学的一个重要分支。
The theory of semigroups is an important branch of algebra .
-
本学位论文主要研究了有限型-A半群代数。
In this thesis , finite type-A semigroup algebras are studied .
-
纽群代数的一个分裂定理和射影提升
A Splitting Theorem on Twisted Group Algebras and Projective Lifting
-
在半群代数理论中,偏序半群的研究一直占据重要的地位。
The study of po-semigroups has taken an important part in the theory of semigroups .
-
二维共形群代数的表示和分类及其在临界现象中的应用
Representation and Classification of the Algebra of Two Dimensional Groups and Application to Critical Phenomena
-
关于布尔群代数半群
On Boolean Group Algebra Semi group
-
布尔群代数的广义逆
Generalized inverse of boolean group algebra
-
布尔群代数夹心半群中的幂等元
Semigroups of Boolean Group Algebra
-
自半群代数理论系统研究开始,正则半群平移壳的研究一直是半群研究的一个重要课题。
The study of the translational hulls of regular semigroups is always one of the important topics in semigroups .
-
对于半群代数的方面来说,[CP]给出了拟半群代数的类似的结论。
At the side of the semigroup algebras , [ CP ] gives a similar result of inverse semigroup algebra .
-
由于利用了多项式的稀疏性半群代数K[A]中算法提高了效率。
Algorithms in semigroup algebra k [ A ] can improve the efficiencies because they utilize the sparsity of polynomials .
-
在序半群代数理论的发展过程中,同余理论和各种理想起着越来越重要的作用。
The theory of congruences and various ideals play an increasing important role in the evo-lution of the algebraic theory of ordered semigroups .
-
基于旋转群代数,以航天器姿态控制研究为背景,提出了四元数的核心矩阵的概念。
A concept of kernel matrix of quaternion is proposed , which is based on rotation group algebra and with spacecraft attitude control as its background .
-
有限群Double代数的C~-指标
C ~ - Index in Double Algebra of Finite Group
-
我们对Kleinian群进行代数扩充,将其扩充为它的正规化子,显然Kleinian群是其正规化子的正规子群。
We extend Kleinian groups from the algebraic view , then we extend it to its normalizer .
-
Crawley-Boevey将例外序列的概念引入路代数的表示理论中,并证明了辫子群对路代数的模范畴中的完备例外序列的作用是可迁的。
Crawley-Boevey introduced the conception of exceptional sequence to the representation theory of path algebra . He has shown that the braid group acts transitively on the set of complete exceptional sequence .
-
晶体学对称群的代数基础及其应用
Algebraic basis of symmetric group of crystallography and its applications
-
除环上线性群到代数群的同态
Homomorphisms from linear groups over division rings to algebraic groups
-
将松散半群的代数结构与序结构联系起来。
The algebraic structure of loose semigroup and ordered structure is related by the paper .
-
这些结果将粗糙集代数性质的研究扩展到右对合广群这个代数系统中。
Through these studies , the study of rough set ′ s algebraic properties are spreaded to right involution groupoid .
-
代数不变量是研究各种变换群下代数型不变性质的一门数学学科,与数学以及科学中的许多分支联系密切并且应用广泛。
The algebraic invariant is a mathematic subject , which study the immutable properties of the algebraic forms under the various transformation groups . The algebraic invariant theory not only is closely bound up with many branches of mathematics and science , but also has a widely application .
-
不同于几何模型,IBM具有内部群结构的代数表示。
Different from the geometrical picture , it has an inherent group structure .
-
建立了Lie群和Lie代数、Riemannian流形与空间算子代数理论联系的模型。
Develop the formulation of the the Lie group , Lie algebra and Riemannian manifolds and spatial operator algebra .
-
一般来说,这些C~-代数不一定是单的,也不一定是纯无限的,但它包含了所有的AF-代数,及所有满足UCT且有平凡的K1群的Kirchberg代数。
They are , in general , neither finite nor purely infinite . However , the class includes all AF-algebras . and all Kirchberg algebras with UCT and trivial K1-group .
-
他们的研究显示出在A型李代数的双参数量子群与Down-up代数之间存在着某些密切的联系。
Their research showed that there exist some close connections between two-parameter quantum groups of type A and down-up algebras .
-
真空中的电磁场与洛仑兹群的李代数
The electromagnetism in vacuo and Lie algebra of the Lorentz group