递归调用

dì guī diào yòng
  • Recursive call;recursive invocation
递归调用递归调用
  1. 从简单的程序设计到递归调用

    From Simple Program Design To Recursive Invocation

  2. 本文通过求两个数及多个数的最大值与最小值问题的程序设计。引申到函数的递归调用,从而把两个不同的知识点紧紧地结合起来。

    This article will talk about recursive invocation through program design , which determines the maximum and minimum value of two numbers and more numbers , thus combining doles two different knowledge points lets get some inspiration from logical thinking of program design .

  3. 递归调用与BASIC

    Recursive Calls and the BASIC Language

  4. 简而言之,递归调用就是代表你的SQL执行的SQL语句。

    In short , recursive calls are basically SQL performed on behalf of your SQL .

  5. 然后,以各个算法生成Cn个编码所需要的平均递归调用次数作为时间复杂度对比的尺度,对几个主要的编码生成算法进行了对比分析。

    We will compare some of the algorithms using the number of recursive calls to enumerate C_n sequences as a measure of time complexity .

  6. 在本例中,它允许您维护y坐标值,从而将更新后的y值传递给下一次递归调用的line模板。

    In this case , it lets you maintain the y coordinate value , passing an updated y value to the next recursive call of the line template .

  7. 如果仔细观察printreporti,您会发现在函数中递归调用之后没有再进一步发生任何事情。

    If you evaluate print_report_i , you will see that there is nothing further that happens in the function after the recursive call .

  8. 设计并实现了一个面向教学的类C编译器,支持全局或局部变量的定义、函数参数传递和函数递归调用。

    Designing and implementing a teaching-oriented C-like compiler , which supports the definition of local and global variables , function parameters , as well as recursive call of functions .

  9. 本文采用两种方法探讨了C语言中递归调用中的Hanoi(汉诺)塔问题。

    Two kinds of methods are adopted in the paper to discuss the Hanoi tower based recursion calling of C language .

  10. 本文为活动记录栈定义了一种偏序关系,它不允许字节码程序递归调用子例程(这种约束与Java虚拟机规范是一致的)。

    We define a partial order on subroutine records , which means subroutines cannot be called recursively in bytecode programs . This choice conforms to the Java virtual machine specification .

  11. 然后,将一个新的Map(由新创建的Map和从递归调用返回的Map组成)返回到optionsToMap。

    Then we 'll return a new Map ( made up of the newly created Map and the Map returned from the recursive call ) to optionsToMap .

  12. 通过递归调用Dijkstra算法,求解出了前N条最短路径对应的最优和次优方案,并以其作为进一步进行多因素方案比选的候选方案。

    The Dijkstra algorithm was applied to obtain several shorter paths , the corresponding optimal alternatives and the sub-optimal alternatives being used to compare with each other by designers .

  13. 如果Group名称与另一个Ruleset相匹配,那么递归调用就尝试进一步分解字符串(对于上一篇专栏文章示例中的an:fields元素,也是这么做的)。

    If the Group name matches another Ruleset , a recursive call attempts to further decompose the string ( this was true for the an : fields element that appeared in the examples in the last column ) .

  14. C-dBASEⅢ递归调用及其实现

    The Implementation of Recursion in C-dBASE ⅲ

  15. 如果子元素是另一个策略操作符,那么就递归调用unmarshalOperator()方法。

    If the child is another policy operator , recursively call unmarshalOperator () .

  16. 要执行递归调用,必须在以递归方式调用的程序的PROGRAM-ID段落中编写RECURSIVE子句(或属性),或指定THREAD编译器选项。

    To make a recursive call , you must either code the RECURSIVE clause ( or attribute ) in the PROGRAM-ID paragraph of the recursively called program or specify the THREAD compiler option .

  17. 如果第三个参数是一个数组,JavaScript代码就会在其元素上迭代并会递归调用appendParam(),以便针对数组中的每个元素将名称/值对添加至url。

    If the third parameter is an array , the JavaScript code iterates over its elements and calls appendParam () recursively so a name / value pair is added to url for each element of the array .

  18. 在访问者实现中可以清楚地看到这一点,您可以看到对eval-concat函数的所有递归调用。

    This is obvious in the Visitor implementation where you see all of the recursive calls to the eval-concat function .

  19. 检索实体模式的另一种方法是通过递归调用getSubCategories方法来遍历类别模式。

    The other way to retrieve the category schema is to traverse the category schema objects by calling the getSubCategories method recursively .

  20. 该表达式是对lazy-seq-fibo的一个递归调用,不过这次,它调用的是有两个参数的情况,并向其传递0和1。

    That expression is a recursive call to lazy-seq-fibo , but this time , it is calling the two argument case , passing in0 and1 to it .

  21. 可再入的函数可以被安全地递归调用或由多任务多次调用。

    A reentrant function can be safely called recursively or from multiple tasks .

  22. 函数递归调用问题的简化读程方法

    A simple reading method for problem of recursive function

  23. 堆栈大小是否支持递归调用的深度?

    Does the stack size support the recursion depth ?

  24. 从那里开始,每一次后续的递归调用都使用那些参数作为新的值。

    From there , each successive recursive call uses the parameters as new values .

  25. 5次递归调用,才得到这个答案。

    5 recursive calls to get there .

  26. 递归调用的利与弊

    The Advantage and Disadvantage in Recursion Calling

  27. 递归调用程序分析

    An Analysis of Recursion Calls Programs

  28. 子程序递归调用的应用

    Application of recursive call of subprogram

  29. 这一优化将递归调用转换成本地回路,这样可以防止栈溢出。

    This optimization transforms recursive calls into local loops , in order to prevent stack overflows .

  30. 您还应该确保不会因为过多的递归调用而耗尽内存。

    You should also ensure that you cannot run out of memory due to having too many recursive calls .