公理集合论

  • 网络axiomatic set theory;axion.tic set thcory;axiom set theory
公理集合论公理集合论
  1. 经典公理集合论系统与中介公理集合论系统之间的包含关系

    Inclusion Relationship between Classical Axiomatic Set Theory and Madium Axiomatic Set Theory

  2. 中介逻辑演算ML与中介公理集合论MS的纯数学意义及其应用前景

    The pure mathematical significance and applied perspective of the medium logical calculus and medium axiomatic set theory

  3. 在中介公理集合论系统(MS)中重新定义了良集的概念,讨论了它的性质。

    Defines the concept of well sets in MS ( axiomatic medium set theory ) and discusses its characters .

  4. 其次,利用中介公理集合论MS的相关理论,构造了MS中的自然数系统,证明了Peano5条公理为MS中的定理。

    Secondly , by using of the medium axiomatic set theory ( MS ), a natural number system in MS is constructed , and it is proved that five axioms of Peano ′ s natural number system are theorems is MS.

  5. 无穷观问题的研究(Ⅴ)&一个兼容实无限与潜无限的公理集合论系统APAS

    An Outlook on the Infinity (ⅴ) - An Axiomatic Set Theory APAS for Holding the Actual Infinity and the Potential Infinity Concurrently

  6. 从古典集合论和近代公理集合论到中介公理集合论

    From Naive Set Theory and Modern Axiomatic Set Theory to Medium Axiomatic Set Theory

  7. 关于公理集合论的一些注记

    Notes on Axiomatic Set Theory

  8. 文中证明古典集合论与近代公理集合论中的任何一个无穷集合都是自相矛盾的非集。

    In this paper , we prove that there is an inconsistency in any infinite set of the classical set theory or the modern axiomatic set theory .

  9. 证明概率论中集合论方法是因果空间的产物,从而改变了Kolmogorov公理系统把集合论方法硬性地搬到概率论中的做法。

    Theorem 2 proves that the set methodology in probability theory is the product of the causation space , and in this way the practice of indiscriminatingly applying the set methodology into probability theory by Kolmogorov 's axiom system can be avoided .

  10. 在策梅洛-弗兰克尔的集合论公理系统ZF中,基础公理把集合的论域限制到良基集合。

    In the Zermelo-Fraenkel system ZF of set theory , the foundation axiom restricts the domain of set theory to well-founded sets .