群速度色散

  • 网络Group Velocity Dispersion;GVD
群速度色散群速度色散
  1. 群速度色散对非线性光纤环镜型OTDM解复用器影响的理论与数值分析

    Theoretical and Numerical Analysis of Group Velocity Dispersion Effects on Nonlinear Optical Loop Mirror OTDM Demultiplexer

  2. 光纤的一个重要特征:线性和非线性效应,如群速度色散效应和Kerr非线性效应。

    Considering the linear and nonlinear optical effects like group velocity dispersion and Kerr nonlinearity , the authors introduce the conception of optical soliton and its research history .

  3. 本文主要研究群速度色散对光纤中自相位调制效应SC谱展宽的影响,分析了产生SC谱的物理机制。

    The study based on self phase modulation mechanism and the effects of GVD on SC generation are mostly focused on by analyzing and calculating theoretically .

  4. 实验表明利用普通单模光纤群速度色散导致的脉冲啁啾抵消SOA自相位调制引起的脉冲啁啾,实现了色散补偿及脉冲压缩。

    The experiment results show that the dispersion compensation and pulse compress are realized by using the pulse chrip induced by group velocity dispersion of single-mode fiber cancelling out the pulse induced by SPM of SOA .

  5. 通过几何投影法优化,得到一种平带光子晶体波导结构,其TM模的最小群速度能减小到c/2335,且群速度色散很小。

    After optimization by geometry projection method , a flat band photonic crystal waveguide is achieved with the minimum group velocity around c / 2335and very small group velocity dispersion for TM mode .

  6. 理论研究了光纤传输特性(群速度色散与衰减)、光器件损耗及光源啁啾效应对OCDMA系统BER性能的影响。

    The influence of transmission characteristic of fiber ( dispersion and attenuation ), loss of optical elements and chirp effect of laser on OCDMA system BER performance is also analyzed .

  7. 结果与Martinez用FresnelKirchhoff积分方法获得的群速度色散一致。

    The analytical formulas of group velocity dispersion are given , which are consistent with Martinez 's result for the stretcher that he proposed and analysed with Fresnel Kirchhoff integral .

  8. 利用Gires-Tournois干涉仪提供负群速度色散补偿钛宝石棒产生的正色散,以获得稳定的ps自锁模脉冲。

    We use Gires Tournois interferometer as a means of providing negative GVD to compensate positive GVD of Ti : sapphire rod . Stable ps self mode locked pulse has been obtained .

  9. 本文就行波半导体激光放大器(TW-SLA)中载流子引起的群速度色散对激光脉冲传播特性的影响作了理论研究。

    Carrier-induced group-velocity dispersion influencing the chirped pulses propagating in traveling-wave semiconductor laser amplifiers ( TW-SLA 's ) is analysed theoretically in this paper .

  10. 光纤中超连续Supercontinuum(SC)谱的产生源于光纤中各种非线性效应(自相位调制效应、交叉相位调制效应,四波混频效应及受激Raman散射等)和群速度色散的共同作用。

    The origin of Supercontinuum ( SC ) generation in optical fibers has been conjectured to be the interplay between fiber nonlinearities ( self phase modulation , cross phase modulation and Raman self scattering ) and group-velocity dispersion ( GVD ) .

  11. 但是随着传输速率和信道容量的提高,40Gb/s传输系统同时面临着光纤群速度色散(GVD)、偏振模色散(PMD)、非线性效应等严重的传输损伤。

    However , with the improvement of transmission rate and channel capacity , transmission system meet transmission impairments caused by group-velocity dispersion ( GVD ), polarization mode dispersion ( PMD ), fiber nonlinear effects and so on .

  12. 非线性过程对色散的影响的研究工作较少,仅在畴反转的结构性光学晶体(PPLN)中研究了群速度色散的产生机制,它本质上也来源于材料的特殊结构。

    Research work on nonlinear effect on dispersion only evolves the formation mechanism of GVD in periodically-poled lithium niobate ( PPLN ), which essentially roots in the special structure of materials .

  13. 结果表明,当一光波处于正常群速度色散(GVD)区,另一光波处于反常群速度色散区时,与两光波参数有关的扰动增益谱应有3种可能的形式;

    The results show that when one of the two optical waves propagates in the normal group-velocity dispersion ( GVD ) regime and the other in the anomalous regime , depending on parameters of the two optical waves , perturbation gain spectra may take three possible forms .

  14. 群速度色散介质中超短脉冲优美厄米高斯光束的演化

    Evolution of Ultra-short Pulsed Elegant-Hermite-Gaussian Beams in Group Velocity Dispersive Media

  15. 三阶群速度色散导致超短脉冲畸变的研究

    Research of ultrashort optical pulse distortion by third order group velocity dispersion

  16. 空间诱导群速度色散的数值研究

    Numerical study of tie spatially induced group velocity dispersion

  17. 展宽器群速度色散的几何光学方法分析

    Analysis of Group Velocity Dispersion of Typical Stretchers by Means of Geometric Optics

  18. 棱镜对引入负群速度色散

    Negative Group - Velocity Dispersion Using Prism Pair

  19. 对于色散透镜,研究了透镜色差和群速度色散影响。

    For dispersive lens the influence of the lens chromatic aberration and group velocity dispersion is studied .

  20. 结果表明,群速度色散会使泵浦光脉宽增加,功率密度降低;

    It is found that pump pulse intensity is seriously decreased and pulse width is increased by GVD .

  21. 为了提高单位晶体长度的参量放大增益,可以通过引入初始啁啾来抵消群速度色散的影响。

    Initial chirps of pump pulse are introduced to compensate GVD and increase the gain of parametric amplification .

  22. 群速度色散对非线性镜锁模激光器输出激光脉冲宽度的影响

    Effects of Group-velocity Dispersion on the Evolution of Optical Pulses in a Mode-locked Laser Using a Single SHG Crystal

  23. 啁啾高斯光脉冲和群速度色散对带前置放大器光接收机灵敏度的影响研究

    Study on effect of Gauss light pulse with chirp and GVD to the sensitivity of receivers with an optical preamplifier

  24. 并对此种光栅的反射谱,时延及群速度色散进行了理论分析;

    The reflection spectrum , time delay , and group velocity dispersion ( GVD ) of the gratings are analyzed .

  25. 应用等效折射率模型对折射率导模光子晶体光纤的群速度色散特性进行了详细的讨论。

    The group velocity dispersion properties of photonic crystal fiber ( PCF ) were investigated in detail by equivalent index model .

  26. 介绍了采用光纤激光陀螺镜测量超短脉冲宽度、形状、相位时的应用理论,以及相关群速度色散的补偿办法。

    The applied theory of the measurement on ultrashort pulse width shape and phase with a laser fiber gyro lens is introduced ;

  27. 利用数值方法,模拟了零色散波长附近群速度色散效应与自相位调制效应共同作用时啁啾的演变。

    Using numerical method , we simulate the evolution of chirp near the zero dispersion point when the dispersion interacts with nonlinear effect .

  28. 基于标量近似理论,使用有效折射率方法对光子晶体光纤的群速度色散特性进行了详尽研究。

    Based on a scalar approximation , the group-velocity-dispersion properties of photonic crystal fiber ( PCF ) were investigated in detail by equivalent-index model .

  29. 本文考虑描述皮秒脉冲传输行为的分布参数的非线性薛定谔方程,分布参数包括群速度色散、非线性和增益/损耗。

    The generalized nonlinear Schrodinger equation with distributed dispersion , nonlinearity , and gain or loss describing the behavior of picosecond pulse is considered .

  30. 分析了单透镜色差和群速度色散对超短脉冲高斯光束聚焦的时间分布及脉冲波面的影响;

    The influence of lens dispersion up to second order on the spatial and temporal intensity distribution of the femtosecond Gaussian beam was analyzed .