介电张量

jiè diàn zhānɡ liànɡ
  • dielectric tensors
介电张量介电张量
  1. 相对论电子束与磁化等离子体的介电张量研究

    Study on the Dielectric Tensors of Relativistic Electron Beam and Magnetized Plasma

  2. 利用微扰理论导出了系统的介电张量,研究发现,MMP具有完全不同于静态磁化等离子体介电张量的形式。

    Adopting method of perturbation theory dielectric tensor of the system is derived , MMP shows a completely different form of the dielectric tensor with the static magnetic plasma .

  3. 线性电光效应引起晶体介电张量变化的简单表示

    Expression for variation of dielectric tensor caused by linear electro-optic effects in crystals

  4. 证明了电能密度表达式是介电张量对称性的必然推论;

    The expression of energy density is proved as the deduction of this symmetry .

  5. 离子回旋频段内热等离子体介电张量研究等离子体中波和波相互作用

    Study of Hot Plasma Dielectric Tensor in the Range of Ion Cyclotron Wave interaction between waves in plasma

  6. 当介电张量和磁导率张量各分量满足一定的条件时,可以产生全向全反射现象。

    If a certain condition between the permittivity and permeability tensors is satisfied , anomalous omnibearing total reflection would show up .

  7. 由热力学第一定律及无损条件导出了介电张量的对称性;

    The symmetry of the permittivity tensor is found to be based on the first law of thermodynamics and the non-wastage condition .

  8. 从麦克斯韦方程和双成分等离子体粒子在外部轴向磁场的线性化运动方程出发,推导出了任意纵向磁场中等离子体介电张量和等离子体-腔漂移通道的电磁波的解析解。

    The plasma tensor dielectric permittivity and electromagnetic wave accurate expressions in the arbitrary axial magnetic field are obtained from the Maxwell 's equations and the double component plasma particle linear movement equations .

  9. 在三角阱的基础上,采用无规相近似方法(RPA)、介电函数张量理论和线性响应理论来研究二维电子气沟道中等离激元的性质。

    On the basis of the triangle trap , the nature of plasmon in the two dimensional electron gas has been studied through the phase approximation method ( RPA ), dielectric function tensor theory and linear response theory .

  10. 用格林函数法求解各向异性背景等离子体(介电常数张量)下的空间电荷场。

    The space-charge field with plasma-background was analyzed using the Green 's function .

  11. 在介电函数张量理论基础上得到了二子带模型和三子带模型下系统中集体激发和单粒子激发存在的条件。

    On the basis of dielectric function tensor theory , we have got the existing conditions of the single particle excitation and the collective excitation in the two-subband and three-subband model .