剩余磁化强度

shènɡ yú cí huà qiánɡ dù
  • Residual magnetization;remanent magnetization
剩余磁化强度剩余磁化强度
  1. 岩石剩余磁化强度的应力效应

    The stress effect on remanent magnetization of rocks

  2. 用无定向磁力仪测量磁化率张量与剩余磁化强度矢量

    The measurement of magnetic susceptibility tensor and remanent magnetization vector with an astatic magnetometer

  3. 无论低Ni或高Ni样品的剩余磁化强度Mr和矫顽力HC都随退火温度的上升而增加。

    In addition , the residual magnetization Mr and coercivity H_C of both high and low Ni-content samples increase with annealing ( temperature . )

  4. 纳米结构材料与常规材料在磁结构上有差别,铁纳米粉体的饱和磁化强度Ms为53emu/g,剩余磁化强度Mr为1.5emu/g,矫顽力Hc为32.2Oe。

    Nanostructure material is different from general material in magnetic structure , and the saturated magnetization Ms , remanence Mr and coercivity Hc of the samples are 53 emu · g-1,1.5 emu · g-1 and 32 Oe respectively .

  5. 两种镀层的磁化强度对比表明,稀土能够提高镀层的饱和磁化强度,降低剩余磁化强度和矫顽力,故含La镀层显示出良好的软磁性能。

    A comparision of magnetization intensity between two deposits shows that the deposit containing La has favorable soft magnetization because rare earth can increase saturation magnetization intensity and decrease residual magnetization intensity and coercitive force of Co-Ni-B-La alloy film .

  6. 研究了Fe-Nd-P和Fe-Ce-P合金镀层的磁性能,经测量发现Fe-Nd-P、Fe-Ce-P合金镀态样品与没有加稀土的Fe-P合金镀态样品相比,饱和磁化强度、剩余磁化强度和矫顽力都要高。

    Magnetic behaviors of Fe-Nd-P and Fe-Ce-P alloy films are studied . Magnetic measurements show that the saturate intensity of magnetization , remanence and coercive force of these alloy films are higher than those of the rare earth-free Fe-P alloy films .

  7. 冷压样品的颗粒为纳米颗粒,低温下有较大的矫顽力和剩余磁化强度。

    The particles of cold - pressed samples is nanometer particles .

  8. 磁滞回线显示产物的饱和磁化强度、剩余磁化强度和矫顽力随升温速率的增加而增加。

    M-H curve shows that saturation magnetization , residual magnetization and coercivity increase with the increasing heating rate .

  9. 随着热处理温度的升高,微球密度变小,饱和磁化强度变大,剩余磁化强度先增大后减小;

    With higher heating temperature , density of microsphere reduced , saturation magnetization increased and remanent magnetization increased initially then reduced ;

  10. 随着反应温度的升高,钴铁氧体颗粒的磁性增强;通过改变水热反应时间,可以对钴铁氧体的饱和磁化强度、矫顽力、剩余磁化强度进行调节。

    With the temperature increasing , the magnetic properties of Co-ferrite enhanced ; we can also modulate the magnetic parameters by changing the reaction time .

  11. 基于交换耦合硬磁化理论,纳米复合材料可以同时具有软磁性相的高剩余磁化强度和硬磁性相的高矫顽力,有望发展成为新一代高性能的永磁材料。

    According to the exchange-coupling theory , nanocomposite permanent material can have the high remanence of soft phase and the high coercivity of hard phase at the same time .

  12. 不同的烧结温度对铁氧体材料的饱和磁化强度、剩余磁化强度、矩形比、矫顽力、温度特性以及介电特性影响不尽相同。

    Li-ferrite shows different properties in saturation magnetic inductance intensity , remanence , squareness ratio , coercive force temperature characteristics and dielectric loss at different sintering temperature . 3 .

  13. 当薄膜厚度为0.3μm时,矫顽力可达4.54×104A/m,剩余磁化强度为0.068T。

    When the thickness of the film was 0.3 μ m , the coercivity got 4.54 × 104A / m , and the remanent magnetization ( Mr ) got 0.14T .

  14. 由于岩矿体剩余磁化强度与感应磁化强度的差异导致岩矿磁异常差异及磁偏角、磁倾角的不同,根据这一特征来判别异常性质。

    Rock and ore body are different in their remanent magnetization and induced magnetization leading to different anomaly and different magnetic declination and magnetic inclination Therefore the difference can be used to judge the anomaly natures .

  15. 大多数样品在退磁测试到550~600℃时,样品剩余磁化强度已衰减了90%~100%,表明岩样中的磁性载体基本上为磁铁矿。

    Thermal demagnetization study indicates that when samples are thermally demagnetized at 550 ~ 600 ℃ the remanent magnetization of most samples is reduced by 90 ~ 100 % , which shows that the carrier of this magnet in the rock is mainly magnetite .