奇异积分方程
- 网络Singular integral equation;SIES
-
奇异积分方程在E面鳍形膜片不连续性问题中的应用
Singular Integral Equation Technique for the Analysis of E-Plane Fin Septa Discontinuities
-
在平面有界域上考虑二维奇异积分方程这里G是有界单连通域,记。
In this paper , singular integral equations are considered , where G is bounded domain in the plane .
-
在电渗透裂纹和非电渗透型的裂纹假设下,利用Fourier积分变换,把相应的混合边值问题转化为求解奇异积分方程。
By using the Fourier transform , the associated problem is reduced to a singular integral equation .
-
带Hilbert核的奇异积分方程的数值解法
On the numerical solution for Singular Integral Equations with Hilbert kernel
-
一种特殊曲线上的Hilbert核奇异积分方程
A Kind of Special Curve Singular Intergral Equations with Hilbert Kernel
-
瞬态反平面动力学问题的Cauchy型奇异积分方程解法
Cauchy Singular Integral Equation Method for Transient Antiplane Dynamic Problems
-
解带有Hilbert核的奇异积分方程的高精度组合算法
High Accuracy Combination Algorithms for Solving Singular Integral Equations with Hilbert Kernel by Quadrature Methods
-
超球拓扑积域上的具有Cauchy核的奇异积分方程
Singular Integral Equations with Cauchy Kernel on the Complex Hyper-sphere Topological Product Domains
-
带Hilbert核奇异积分方程特征方程的Galerkin方法
The Galerkin Method for the Characteristic Equations of the Singular Integral Equations with Hilbert Kernel
-
具有Hilbert核非正则型奇异积分方程的直接解法
The Direct Method of Solution for the Non-normal Type of Singular Integral Equation with Hilbert Kernel
-
问题求解最后归结为求解一组Cauchy型奇异积分方程。
Solution of the problems reduces to solving a set of Cauchy type singular equations .
-
封闭曲线上带Cauchy核奇异积分方程的稳定性
Stability of the Solution of Singular Integral Equations with Cauchy Kernel on a Closed Curve
-
Clifford分析中于特征流形上奇异积分方程的正则化
The Regularization Theorem of the Singular Integral Equations on Characteristic Manifold in Clifford Analysis
-
同时利用所得公式对Clifford分析中奇异积分方程组的可解条件进行了讨论;
Then using these formulae , study the solvable conditions of singular integral system in Clifford analysis .
-
含卷积核的奇异积分方程的Noether定理
The Noether Theorem of the Singular Integral Equation with Convolution Kernel
-
并对SH波入射的情形进行了详细的分析,求解了相应的奇异积分方程。
Taking SH wave as an example , the singular integral equation is solved by the use of the Chebyshev polynomials .
-
具有Bergman核的奇异积分方程
Singular Integral Equation With Bergman Kernel
-
这是一个带Cauchy核的奇异积分方程,应用Chebyshev多项式展开,求出此方程的解析解。
This is a singular integral equation with Cauchy kernal , we can find the analytic solution by using Chebyshev polynomial expension .
-
利用单裂纹的散射场建立了折线裂纹在SH波作用下的Cauchy型奇异积分方程。
By using the obtained scattered field of the single crack , Cauchy type singular integral equations for the broken crack are established .
-
一类核密度含参数的Cauchy核奇异积分方程关于积分曲线摄动的稳定性
The stability of Cauchy 's kernel singular integral equation with a parameter included in the kernel density on the perturbation of integral curve
-
根据所得奇异积分方程和Cauchy型积分的端点性质,得出了确定刚性线和界面交点处奇异性阶数的特征方程。
The characteristic equation of the singular stress order at the intersection is obtained using the integral equation and tip characteristic of Cauchy type integral .
-
通过引入Sherman变换,将求解裂纹的边值问题转化成了求解柯西核的奇异积分方程组。
By introducing a Sherman transformation , the boundary value problem is transformed into singular integral equation .
-
一般情况的(封闭或开口弧段曲线)含Hilbert核的奇异积分方程:的求解问题,主要通过转化为黎曼边值问题来研究。
General ( closed or open arc curve ) containing Hilbert kernel singular integral equation : Solving the problem , mainly through into Riemann value problem to study .
-
而在第二部分中,我们把第一部分的结果应用到Cauchy奇异积分方程,导出了其关于积分曲线摄动的稳定性的研究及其一些结果;
We apply some results of the first partition to the second partition and solve the stability of the solution to the Cauchy singular integral equation .
-
{α,β}类中含Cauchy核与卷积核的对偶型奇异积分方程非正则型解法
On method of solution in class { α,β } for the dual singular integral equation with Cauchy kernel and convolution kernel in the non-normal type case
-
带Carleman位移的奇异积分方程的正则化问题
Regularization Problem of Singular Integral Equation with Carleman Displacement
-
本文在L2[a,b]空间内研究非线性奇异积分方程组(1)。
The nonlinear singular integral equations in L2 [ a , b ] space are investigated .
-
再由裂纹边界条件建立以分布位错密度为未知函数的Cauchy型奇异积分方程。
Next by matching the traction along the cracks , Cauchy singular integral equations were obtained , in which the distributed dislocation density served as the unknown function .
-
在线性理论范围内此问题可化成Fredholm第一类奇异积分方程。
Within the limits of linearized theory , the problem was reduced to a Fredholm singular integral equation of the first kind .
-
利用积分变换方法,将含Grifith裂纹的无限长板条问题转化为Laplace变换域中一Cauchy型奇异积分方程。
By using the integral transform method , the problem of an infinitely long elastic strip with a Griffith crack is converted into a Cauchy type singular integral equation in Laplace transform domain .