对偶定理

  • 网络duality theorem;dual theorem;duality theory
对偶定理对偶定理
  1. 较多有效解类的最优性条件和Lagrange对偶定理

    The optimality conditions and the Lagrange duality theorems for several kinds of major efficient solutions

  2. 用环论的方法证明了群分次环上的双积对偶定理,主要结果是当G为有限群时,R#kG#。

    In this paper , using some techniques from ring theory , duality theorems for group-graded rings in double products are proved . The main result is that when G is finite , R # kG # .

  3. (F,ρ)s-凸多目标规划的逆对偶定理

    Converse Dual Theorem of ( F ,ρ) _s-Convex Multiobjective Programming

  4. DC规划的一个对偶定理

    A Duality Theorem for DC Programming

  5. 非光滑Fuzzy多目标规划的Fuzzy有效解的Mond-weir型对偶定理

    Mond-Weir type Duality for Fuzzy Efficient Solutions in Nonsmooth Fuzzy Multiobjective Programming

  6. 区域上Hardy空间的对偶定理

    The dual theorem of Hardy space on domains in r ~ n

  7. 无约束向量极值问题的Lagrange对偶定理

    Lagrange Dual Theorem for Unconstrained Vector Optimization Problems

  8. 在(F,ρ)s-凸函数的基础上,给出了多目标规划的两个逆对偶定理。

    On the basis of ( F ,ρ) _s Convex functions two converse dual theorems of multiobjective programming are given under .

  9. 广义Hamming重量上、下界的对偶定理

    A Dual Theorem of Upper and Lower Bounds on the Generalized Hamming Weights

  10. 广义凸多目标规划的Wolfe型对偶定理

    The Wolfe Type Duality in the Generalized Convex Multiobjective Programming

  11. 给出了(F,ρ)-不变凸函数的一些性质,提出了(F,ρ)-不变凸函数多目标规划的弱对偶定理和直接对偶定理。

    Some properities of ( F ,ρ) - invariant convexity functions are given , the weak duality theorem and the direct duality theorem of multiobjective programming for ( F ,ρ) - invariant convexity functions are presented .

  12. 依所给约束函数的不同条件来恰当划分约束集,在广义(F,ρ)凸性下,证明了弱对偶定理、强对偶定理以及严格逆对偶定理。

    Under the different conditions of the constrained functions , dividing constrained sets properly , and under generalized ( F , ρ) convexity , the theorems of the weak duality , strong duality and strictly reverse duality are testified .

  13. 本文将射影平面上二次曲线的Steiner定理〔1〕及其逆定理、对偶定理推广到n维射影空间Pn的二次超曲面上。

    In this paper , the Steiner theorem . and its contra-theorem , duality-theorem of conical section on projective plane are generalized to the quadric-hypersurface of n-dimensional projective space .

  14. 本文在广义(F,ρ)&凸性条件下,利用有效解概念,给出了多目标分式规划的某些对偶定理。

    For a multiobjective fractional program which involves inequality and equality constraints , this paper derives some duality theorems from using the concept of efficiency coupled with some generalized ( F ,ρ) - convexity assumptions on the objective and constraint functions .

  15. 给出了排序定理和Chebyshev不等式的对偶定理,并对排序定理、Chebyshev不等式及其对偶定理进行了推广。

    In this paper , the duality theorems of arranging sequence theorem and Chebyshev inequality are given , and arranging sequence theorem , Chebyshev inequality and their duality theorems are generalized .

  16. 一类多目标优化控制问题的两个弱对偶定理

    Two weak duality theorems for a class of multiobjective optimal control problems

  17. 集合函数多目标规划的拉格朗日型对偶定理

    Lagrange Duality Theorem for Multiobjective Programming with Set Functions

  18. 关于U.Neri的对偶定理的一点注记

    A note on a paper of U. neri 's

  19. 线性拓扑空间中一般向量极值问题的ε-共轭对偶定理

    ε - Conjugate Duality Theorem of Vector Extremum Problems in Linear Topological Spaces

  20. G-旋模型场代数中的对偶定理

    The Duality Theorem in Field Algebra of G-Spin Model

  21. 半序局部凸空间的对偶定理

    The Dual Theorems of Partially Ordered Locally Convex Spaces

  22. 多目标最优化在实际生产领域有着广泛的应用,最优性条件和对偶定理是人们研究的主要内容。

    Multiobjective optimization is applied in extensive areas .

  23. 检错码的对偶定理

    A Dual Theorem on Error Detection Codes

  24. 关于线性时变系统的结构和对偶定理的注记美国人的时间观

    The notes for the structure of linear time & varying system and the duality theorem

  25. S&可分解算子的谱对偶定理

    A Duality Theorem for S-Residually Decomposable Operators

  26. 对偶定理的一个推广

    A generalization of the duality theorems

  27. 多值模代数方程组的对偶定理

    Duality Principle of Multiple-Valued Modulo-Algebra Equations

  28. 密勒定理、密勒对偶定理及应用

    The Original Miller 's Theorem , its Dual Version of the Miller 's Theorem and their Applications

  29. 然后给出定理2.3的一个正确的证明.同时指出文献[1]中的对偶定理3.4是不正确的。

    Meanwhile , we also point out that Theorem 3.4 of [ 1 ] is not true .

  30. 本文讨论了一类多目标广义凸分式规划的对偶定理,其结果是对张吉军的对偶定理的推广。

    The paper discusses the duality theorems for the generalized convex multiobjective fractional programming and get a more general result .