柠檬醛

柠檬醛柠檬醛
  1. 肉桂醛和柠檬醛对黄曲霉及烟曲霉细胞DNA与RNA的影响

    Effect of cinnamaldehyde and citral on DNA and RNA in Aspergillus flavus and A. fumigatus cells

  2. 碳纳米管负载的铂催化剂对柠檬醛选择加氢及CO微分吸附热研究

    Pt Catalyst Supported on Carbon Nanotubes for Selective Hydrogenation of Citral and Differential Heats of CO Adsorption

  3. KF/Al2O3催化柠檬醛和丙酮缩合制备假性紫罗兰酮

    Synthesis of Pseudo-ionone by Condensation of Citral with Acetone in presence of KF / Al_5O_3

  4. 研究了以固体Ba(OH)2作为催化剂,使柠檬醛与丙酮醛醇缩合反应制备假紫罗酮的方法。

    Using solid barium hydroxide as catalyst , a preparation method of pseudoionone from citral and acetone has been studied .

  5. 其中,对柠檬醛和香草酸的EAG反应较强烈,并随着浓度升高反应值增大。

    EAG values became greater as the concentration increased .

  6. 结果①柠檬醛和氟康唑对原始白念珠菌的MIC值分别为:0.162μg/ml和2.0μg/ml;

    Results ① MIC of citral and fluconazole against C. albicans were 0.162 μ g / ml and 2.0 μ g / ml , respectively ;

  7. D-72磺酸树脂催化柠檬醛环化合成对伞花烃

    Synthesis of p-cymene by D-72 sulfoacid resin catalysis citral cyclization

  8. 结果:肉桂醛、柠檬醛对5株深部真菌的MIC值范围分别为0.014~0.055μg/ml、0.162~1.295μg/ml。

    Results : the MIC range of cinnamaldehyde and citral aganist 5 system fungi were 0.014 ~ 0.055 μ g / ml and 0.162 ~ 1.295 μ g / ml , respectively .

  9. 试验结果表明,采用微波促进催化合成技术,可以使柠檬醛与丙酮醇醛缩合反应的时间缩短一半以上,产率提高12%以上,所得的产物经IR和GC等方法测定品质良好。

    The experimental results showed that the microwave PTC technique had the advantages of reducing the time of condensation between citral and acetone about 4 ~ 8 h and increasing the yield about 12 % . All the produced compounds were identified by IR and GC .

  10. 其最优条件为:柠檬醛∶1,2-丙二醇:催化剂∶带水剂为1mol:1.4mol∶24mmol∶100mL,反应在回流温度下进行,反应时间2.0h。

    The optimum conditions are as follows : citral ∶ 1,2-propandiol ∶ catalyst : dehydrating agent is 1mol ∶ 1.4mol ∶ 24mmol ∶ 100mL . Reaction temperature is reflux temperature , reaction time is 2.0h .

  11. 结果表明,在培养基pH4.5时,柠檬醛对多数试验真菌的最低抑菌浓度(MIC)为0.10%~0.15%,与山梨酸钾的抗菌效力相近,优于苯甲酸钠。

    As a result , the minimum antibiotic concentration of citral for the majority eumycetes is 0 10 % ~ 0 15 % in the medium of pH4.5 and its antibiotic property is similar to that of potassium sorbate , but better than that of sodium benzoate .

  12. 柠檬醛抑制黄曲霉生长相关机理的研究

    Study of the Relative Mechanism for Citral Antigrowth to Aspergillus flavus

  13. 氨基磺酸催化柠檬醛缩乙二醇的合成研究聚乙二醇单甲醚-琥珀酰基半胱氨酸的合成

    A Study on Synthesis of Citral-glycol Acetal Catalyzed by Sulfamic Acid

  14. 大多是单萜、倍半萜烯类化合物,Z-柠檬醛含量最多,达24.21%。

    Z-Citral content was 24.21 % which was the most component .

  15. 柠檬醛体外诱导白念珠菌耐药的实验研究

    Studies on Resistant Induction of Citral to Candida albicans in vitro

  16. 肉桂醛、柠檬醛抗黄曲霉作用的研究

    Study of Antifungal Effect of Cinnamaldehyde and Citral on Aspergillus flavus

  17. 我国天然柠檬醛的利用及鸢尾酮的合成进展

    Advances in uses of natural citral and synthesis of irone in China

  18. 以市售β紫罗兰酮为起始物,经臭氧化反应制备β-环柠檬醛。

    β Cyclocitral was prepared from β ionone by ozonization .

  19. 柠檬醛致黄曲霉孢子丧失萌发力的机制

    The Mechanism of Loss of Germination Ability of A.flavus Spore with Citral

  20. 柠檬醛抗黄曲霉作用的分子机理

    Molecular Mechanism of Inhibitory Effects of Citral on Aspergillus flavus

  21. 减压精馏山苍子油提高柠檬醛含量的研究

    Raising Citral Content of Litsea Cubeba Oil by Reduced-pressure Distillation

  22. 磁化处理对柠檬醛精制过程的影响

    Influence of Magnetizing Treatment on the Refined Process of Citral

  23. 载体强酸催化合成柠檬醛二乙缩醛

    Catalytic synthesis of citral diethyl acetal by supported strong acid

  24. 柠檬醛胁迫环境下黄曲霉线粒体的畸变

    Mitochondria aberration of Aspergillus flavus under citral stress circumstance

  25. 柠檬醛对大鼠及人血小板聚集作用的影响

    Effect of Citral on Rat and Human Platelet Aggregation

  26. 柠檬醛与苄氯制备缓释性香料的研究

    Study on the preparation of slow released aromatics from Citral and Benzyl Chloride

  27. 柠檬醛对花生酱的防腐效果

    The preservative effect of the citral on peanut butter

  28. 臭氧法制备β-环柠檬醛

    Preparation of β - Cyclocitral by Ozonization

  29. 磺酸树脂对柠檬醛环化的催化作用及其动力学特征研究

    Research on Catalytic Effect of Sulfoacid Resin on Cyclization of Citral and Its Kinetic Characteristics

  30. 再由柠檬醛,经次氯酸钠选择性环氧化,而后开环转化为芳樟醇。

    Citral underwent selective epoxidation of sodium hyp rite and Wharton transposition to afford Linalool .