正规化子

  • 网络normalizer
正规化子正规化子
  1. 本文给出一个不是Sylow正规化子的反正规子群的例子。

    In this note , we contribute an example of an abnormal subgroup which is not a Sylow normalizer .

  2. 通过引入πSylow系与π系正规化子的概念,将可解群的Sylow系理论作以推广。

    The Sylow system theory of solvable group is generalized by introducing the concepts of π - Sylow system and π - system normalizer .

  3. PU(n,1)的离散子群的正规化子及其应用

    Discreteness of Normalize of Discrete Subgroups in PU ( n , 1 ) and an Application

  4. 本章运用了可解群G的π-Hall子群的相关理论,在给定的条件下,将有限群的Sylowp-子群、p-子群的正规化子的两个结果推广到π-Hall子群的情形。

    Let G be a solvable group . In this paper , we use the theory of the π - Hall subgroups to characterize the Sylow p-subgroups , p-subgroups of group G. Some previously known results are generalized .

  5. 我们对Kleinian群进行代数扩充,将其扩充为它的正规化子,显然Kleinian群是其正规化子的正规子群。

    We extend Kleinian groups from the algebraic view , then we extend it to its normalizer .

  6. 给出了Fq上奇异辛群Sp2v+t(Fq)的Sylow子群的结构并讨论了其正规化子的性质。

    In this paper , the authors study the structure of sylow subgroups of singular symplectic group Sp 2v + t ( Fq ) over Fq and discuss the properties of their normalizers .

  7. 在研究双曲流形的等距群有限时,利用了Kleinian群正规化子离散性的一个充分条件。

    Used a sufficient condition about the discreteness of normalizers of Kleinian groups when he studied the finiteness of the isometry group of the hyperbolic manifold .

  8. 关于π-Hall子群正规化子的两个结果

    Two Results on the Normalizer of the π - Hall Subgroup

  9. Hall-子群的正规化子与有限群结构

    The Normalizer of Hall Subgroups and the Structure of Finite Groups

  10. 研究了已给准素子群的正规化子指数的有限群。

    Finite groups with given indices of normalizers of primary subgroups are studied .

  11. π-可解群的π-正规化子(续)

    π Normalizers of π Soluble Groups ( Continue )

  12. 给出了所有准素子群的正规化子有素数幂指数的有限群的幂零长的界。

    The bounds of nilpotent lengths of finite groups with normalizers of primary subgroups having prime power indices are obtained .

  13. 近些年来,有限群整群环的正规化子问题已成为整群环理论研究中的热点问题之一。

    The normalizer problem has become one of the most extensively studied top-ics in the theory of integral group rings of finite groups in recent years .

  14. 在第一部分3.1中,给出了若干由交换子群的中心化子或正规化子满足的条件所确定的有限群的结构描述。

    In the first section , namely 3.1 , we obtained some description of the structure of some finite groups whose centralizers or normalizers of abelian subgroups satisfy some conditions .

  15. 本文第二部分3.2,通过考虑某些交换子群的中心化子&致于正规化子,得到了p-幂零群和p-闭群的若干充分条件。

    In the second section , namely 3.2 , we consider some abelian subgroups whose centralizers are equal to its normalizers , so we obtain some sufficient conditions of p-nilpotent groups and p-closed groups .

  16. 两类正规化双全纯映照子族齐次展开式的精细估计

    The Refined Estimation of Homogeneous Expansion for Two Subclasses of Normalized Biholomorphic Mappings

  17. 给出了F-伪正规子群包含投射子的一个充分条件,在此基础上给出了西洛子群正规化子的幂零上根在群中次正规的有限群的构造。

    He authors give one sufficient condition for a - abnormal subgroup containing a - projector , and give the structure of finite group in which nilpotent coradicals of normalizers of non-unit Sylow subgroups are subnormal .