禁带

jìn dài
  • forbidden band;stopband;forbidden zone
禁带禁带
禁带[jìn dài]
  1. 揭示了AlN/Si界面存在连续分布的载流子陷阱态,给出了陷阱态密度在Si禁带中随能量的分布;

    The trap states distribution with the energy range at Si forbidden band was given .

  2. 结果表明,ID在禁带中产生~20meV的浅施主能级,其电活性起源于硅和二氧化硅沉淀的界面态。

    The experimental results show that ID creates about a 20 meV donor level in the forbidden band , which originates from the interface states of precipitated Si / SiO2 .

  3. 确定了声子的能量Ep与禁带宽度Eg的值。

    The phonon energy E , and the energy gap E , are ascertained .

  4. Fe掺杂后石墨烯禁带宽度为1.51ev,且有磁性产生。

    Fe-doped graphene owns the gap of 1.51 eV and existence of magnetism .

  5. 氧化镍是具有典型的3d电子结构的氧化物半导体,是一种p型半导体材料,禁带宽度是在3.6~4.0eV之间。

    NiO is a p-type semiconductor material with typical 3d electron structure oxide . Its band gap is between 3.6-4.0 eV .

  6. 可控禁带ZnO纳米晶光阳极的制备及其光电性能研究

    Preparation and Photoelectrochemical Study of Nanocrystalline ZnO Photoanode Electrodes with Controllable Band Gap

  7. ZnO作为一种直接禁带半导体材料,具有压电,光电和掺杂过渡族元素后表现出的磁性。

    ZnO is a direct band gap semiconductor with piezoelectric and photoelectric properties .

  8. 宽禁带SiC材料中杂质的分析研究

    Studies of Impurities in a Wide Band Semiconductor SiC

  9. 宽禁带半导体MgxZn(1-x)O薄膜的研究报道

    Report of Research on Wide-band-gap Semiconductor Mg_xZn_ ( 1-x ) O Thin Films

  10. GaN是一种新型的宽禁带半导体兰色发光与激光材料。

    GaN is a new wide band gap semiconductor laser material .

  11. 宽禁带半导体In2O3结构和性能的第一性原理研究

    Characterization for the Structures and Properties of Wide Bandgap Semiconductor In_2O_3 by First-principle Calculations

  12. 激光器有源区材料的禁带宽度Eg。

    The forbidden band width Eg of QW LD active layer materials .

  13. ZnO作为一种宽禁带半导体材料,其拥有着良好的光电性能。

    ZnO is a wide band-gap semiconductor material , and has excellent optical and electrical properties .

  14. ZnO是一种新型的直接带隙的宽禁带半导体材料,在信息领域有着重要的应用。

    ZnO is a novel wide direct-gap semiconductor . It has great uses in information age .

  15. 窄禁带Hg(0.79)Cd(0.21)Te的红外光致发光

    Infrared photoluminescence from narrow gap hg_ ( 0.79 ) cd_ ( 0.21 ) te

  16. 针对利用E极化波第一禁带工作的光子晶体类曲折波导慢波结构,讨论了结构参量对此类慢波结构的色散及耦合阻抗的影响。

    The photonic crystal folded waveguide slow-wave structure using the second photonic crystal band gap of E mode is also investigated .

  17. ZnO是一种重要的功能材料和新型的Ⅱ-Ⅵ族宽禁带半导体材料。

    Zinc oxide is an important functional and navel material of ⅱ - ⅵ wide bandgap semiconductor .

  18. 宽禁带GaN基半导体激光器进展

    Recent Progress in Wide Bandgap GaN-based Semiconductor Laser Diodes

  19. ZnO是新一代宽禁带、直接带隙的多功能Ⅱ-Ⅵ族半导体材料。

    ZnO is a new generational multifunctional II - VI compound semiconductor with a wide and direct band gap .

  20. 近几年,ZnO作为宽禁带半导体受到人们越来越多的重视。

    In recent years , ZnO , as a wide band semiconductor , has gained more and more attention .

  21. 首次利用Mn离子掺杂成功实现了ZnO薄膜的禁带宽度的调节。

    For the first time ion implantation using Mn had successfully realized the ZnO thin film energy gap adjustment .

  22. 用PL和PC分别研究了掺铁半绝缘InP的禁带收缩现象和材料中的缺陷。

    Band-gap narrowing phenomenon and defects in Fe doped SI InP are studied using PL and PC.

  23. 窄禁带半磁半导体Hg(1-x)MnxTe的磁化强度

    Magnetization of Narrow GaP Semimagnetic Semiconductor Hg_ ( 1-x ) Mn_x Te

  24. BN(n,0)纳米管的禁带宽度随着n的增大而增大,并收敛于5.39eV。

    The band-gaps of BN ( n , 0 ) nanotubes also increase with the increase of n and converge at 5.39 eV .

  25. ZnS是典型的直接宽禁带Ⅱ~Ⅵ族化合物半导体,室温下其禁带宽度为3.66eV。

    ZnS is a typical direct broad bandgap ⅱ ~ ⅵ group compound semiconductor .

  26. 氨水浓度对CdS薄膜的光学性质也有很大的影响,随着氨水浓度的提高所得到的CdS薄膜的禁带宽度增大。

    The ammonia concentration has greatly influenced the optical properties and the band gap of CdS thin films .

  27. 共振受主态在零禁带Hg(1-x)MnxTe磁量子输运中的影响

    Resonant acceptor influenced quantum transport behavior of zero-gap p-hg_ ( 1-x ) mn_xte

  28. 讨论了三种旋转操作对TE,TM模式带隙及完全光子禁带的影响。

    The effect of rotation on TE and TM mode band gaps and absolute band gap is investigated .

  29. 由于TiO2禁带较宽,对太阳能的利用效率较低,制约了其在实际中的应用。

    However , their applications have been restricted due to wide band gap and low solar energy efficiency of TiO2 .

  30. 就目前研究较多的TiO2系光催化剂而言,其较宽的禁带宽度和较低的量子效率仍然是限制其发展的主要原因。

    As far as the general TiO2 photocatalyst , the broad band gap and low quantum efficiency confine its development .