辛算法
- 网络Symplectic algorithm
-
N2双原子系统经典轨迹的辛算法计算
Computing classical trajectories of N 2 system by symplectic algorithm
-
研究了在欧拉-拉格朗日系统上的jet辛算法。
A jet symplectic algorithm for Euler-Lagrange systems is studied .
-
强激光场中CO分子经典轨迹的辛算法
Classical Trajectories of CO in Laser Fields in the Symplectic Scheme
-
欧拉-拉格朗日系统的jet辛算法
A Jet Symplectic Algorithm for Euler-Lagrange Systems
-
符拉索夫板的Hamilton正则方程及其辛算法
The Hamilton canonical equation for Vlasov plates and its symplectic algorithm
-
基于Hamilton体系和辛算法的微分对策数值法
Numerical Method Based on Hamilton System and Symplectic Algorithm to Differential Games
-
基于高阶辛算法求解Maxwell方程
High order symplectic schemes for Maxwell 's equations
-
主要综述了辛算法在弹性力学、波动方程以及DNA弹性杆力学分析中的应用及隐式辛算法的稳定性分析。
It summary the applications of symplectic algorithm in elasticity , wave equation , the DNA elastic rod , and analyze the stability of the implicit symplectic algorithm .
-
Hamiltonian矩阵平方约化求解特征问题的辛算法
The Symplectic Algorithm Method for Solving Hamiltonian Matrix by Means of Reduction of Squared
-
树形多体Hamilton系统辛算法
Symplectic algorithm for Hamilton multibody system
-
Hamilton弹性动力学及其辛算法&一个新学科研究的进展
Hamilton Elastodynamics and the Symplectic Algorithms & the Advances in the Study for a New Subject
-
测试Hamiltonian矩阵结构问题的辛算法
Compared the actuality of the structure of th Symplectic algorithm for testing the Hamiltonian matrix
-
最后将辛算法运用到Maxwell方程组的时域模拟中。
The last , the symplectic algorithm is applied to the time-domain simulation for Maxwell Equations .
-
将通常的四阶和六阶辛算法与改进的显式四阶和六阶辛算法分别应用于太阳系Hamilton系统的二体和N体问题。
The four-order and six-order Symplectic Algorithm with ameliorated one are used for the Two-Body and the N-Body problem of the Hamilton system in the solar system respectively .
-
数值算例表明:Hamilton系统的辛算法数值解是十分可靠的,数值结果是收敛的。
The numerical examples show : the symplectic numerical solutions of the Hamilton system are very reliable , numerical results are convergent .
-
结合二维TMz波的数值计算结果表明,高阶辛算法较FDTD法有着更强的计算优势。
Numerical results show that high order symplectic scheme is superior to FDTD for solving 2D TMz wave .
-
将辛算法应用于强场一维模型的计算中,并与Runge-Kutta法作了比较。
The numerical solutions of the 1-dimensional model of strong field are calculated by means of both symplectic and Runge-Kutta algorithms .
-
本文采用辛算法数值求解一维含时Gross-Pitaevskii(GP)方程。
The symplectic method is applied to solve numerically the 1D time-dependent Gross-Pitaevskii ( GP ) equation .
-
对N体问题的数值积分中的Runge-Kutta-Fehlberg法(简称RKF法)、辛算法和厄米算法在N体问题中应用时引起的能量误差、半长径和偏心率的变化进行比较。
The Runge-Kutta-Fehlberg algorithm ( RKF ), the symplectic algorithm and the Hermite algorithm for N-body problems are studied with energies errors and semimajor axis and eccentricity .
-
采用这种辛算法和RK法计算了一个数值例子,并与精确解作了比较。
To prove its utility , a simple example is described using the symplectic scheme and RK method , and compared with the exact solution .
-
四阶辛算法结合四阶精度的空间差分格式较FDTD法具有更为优越的数值色散性&各向同性。
Although the high order schemes have almost the same stability as the FDTD , the fourth order scheme with a fourth order approximation in spatial domain has a superior numerical dispersion & isotropic property of the scheme .
-
本文利用常微分方程的连续有限元法计算了A2B模型的分子的经典轨迹和能量误差,将计算延长到10-8s,并与辛算法进行了比较。
Utilizing continuous finite element methods of ordinary differential equation , we compute the energy error and classical trajectories of A2B molecule system , and compare to symplectic algorithm .
-
本文从Hamilton体系应用最为成熟的力学问题入手,借助于单自由度弹簧-滑块系统的振动问题,描述了Hamilton体系的形式和内涵,引出求解Hamilton对偶方程组的辛算法。
Begin from the perfect application of Hamilton system in mechanics and recur to the libration issue of single freedom degree spring-sliding block system , this thesis describes the form and meaning of Hamilton system and also introduces the symplectic arithmetic which is used to resolve Hamilton mate equation group .
-
采用辛算法提高多体系统动力学的计算精度
Increase in computational accuracy of multibody system dynamics via symplectic algorithm
-
基于哈密顿体系辛算法喇叭天线口径场的研究
Horn Antenna Aperture Field Based on Hamilton Architecture and Symplectic Algorithm
-
弹性梁动力响应分析的一种辛算法
A Symplectic Algorithm for Dynamic Response Analysis of Elastic Beams
-
含力梯度显辛算法拓广于摄动二体问题
Explicit Symplectic Integrators with Force Gradient Extend to the Perturbed Two-body Problem
-
解哈密尔顿方程的离散算法就是辛算法。
The discrete algorithm to solving Hamiltonian is just called sylleptic algorithm .
-
李级数算法和显式辛算法的相位分析
Phase analysis of Lie series algorithm and explicit symplectic algorithm
-
基于螺旋线上谱因式分解的地震波场隐式辛算法
Seismic wave modeling with implicit symplectic method based on spectral factorization on helix