感知机
- 网络perceptron;perceptrons;Perception
-
用感知机学习算法改善MUSIC测向算法的分辨率
Improvement of the Resolution of MUSIC Method with the Perceptron Training Algorithm
-
感知机的DNA计算模型
DNA-Based Model of Perceptron
-
基于多层感知机和RBF转换函数的混合神经网络
Hybrid Neural Network Based on Transfer Functions of Multilayer Perception and Radial Basis Function
-
一种基于L2范数的软核感知机感知机的DNA计算模型
Soft kernel perceptron in terms of L_2 norm DNA-Based Model of Perceptron
-
本神经网络算法用于动态心电信号的数据压缩。神经网络采用了反向传播算法(PB算法)的三层感知机。
A neural network algorithm for data compression of ambulatory ECG signals is proposed The neural network is a 3-layer perceptron with back propagation algorithm .
-
系统采用感知机(Perceptron)算法进行参数训练。
A perceptron algorithm is used in training parameters .
-
介绍了金刚石钻头设计专家系统中的配方设计子系统(BPFES),包括多层感知机数学模型和BP算法,专家子系统的设计,钻头配方参数样本的网络训练;
The bit prescription subsystem including multiple perceptron mathematics model and BP algorithm , expert designing subsystem and exercise of network of bit prescription parameter samples is emphasized on .
-
本文建立了在人工神经网络中实现简单的线性分类功能的、感知机的DNA计算的自装配模型,该模型并行地实现了神经网络的学习过程,充分利用了DNA计算极度并行的特点。
In this paper , we develop a DNA_based model to realize linear classifying function of perceptron in neural network . This model completes parallel learning courses of neural network and uses the utmost parallel feature of DNA computing adequately .
-
然后,在此基础上,应用神经网络理论中的感知机模型,对于不同的位字符空间,生成了相应的线性识别机器,PC仿真给出了良好的结果。
On the basis of that , create different linear recognition machines for characters in different spaces imitating the perceptive machine model in NN theory . The linear machines we designed have got better effect in practical application .
-
针对这一问题,开展了基于神经网络合并技术(NN)的研究.采用多层感知机神经网络模型,通过仿真实验确定了模型结构。
So , the NN ( neural network ) based combination technique is studied , which introduces the NN model with multilayer perceptron to determine model structure through simulation .
-
研究了采用多层感知机MLP网络实现语音起点检测的方法。
A new speech detection method using the MLP neural network is studied , including the structure of MLP NN and BP learning algorithm .
-
为了更有效地优化前向神经网络的求解能力,提出了一种新的综合的转换函数,将多层感知机和RBF神经网络更有机地结合起来,以产生灵活的决策边界。
In order to effectively optimizing the solution of feed-forward neural network , a new general transfer function is proposed that effectively unifies the inputs of multilayer perception and radial basis function to provide flexible decision border .
-
本文对于二元输入一阶感知机平均记忆容量C(n)(n为输入模式向量的维数)进行了估计,得出其上、下界分别是2n,1/2n。
In this paper is studied the average memory capacity of first-order perceptrons and it is estimated in the n - dim binary input case that an upper bound of it is 2n and a lower bound of it , 1 / 2 n.
-
本文将此理论扩展到非线性sigmoid神经元,分析了用来解决模式分类问题的、由sigmoid神经元构成的单隐层MLP(多层感知机)的内部行为;
Extending this theory , this paper analyzes the sigmoidal neurons and the internal behaviors of single hidden-layer perceptrons ( MLPs ) with sigmoid neurons trained for pattern classifications .
-
采用单层感知机网络、BP网络、径向基网络对汽车目标的特征数据进行识别,最后分别运用多数投票、平均Bayes、专家委员会三种融合算法把对各网络识别结果进行融合,得出最终判别结果。
Single layer perceptron neural network , BP neural network and RBF neural network are used to recognize vehicle target by features vector . Finally , the recognition result is fused by using the voting method , average Bayes classifier and committee of expert to get the final result .
-
基于这一事实,提出一种基于L2范数的软核感知机(SoftKernelPerceptron,SKP),将感知机算法直接用于求解L2范数软边缘算法决定的线性可分问题。
Based on this fact , we propose a Soft Kernel Perceptron ( SKP ) in terms of L2 norm , in which the regular perceptron is directly employed to solve the linearly separable problem determined by L2 norm soft margin algorithms .
-
实际数据库的测试结果表明,SKP算法能够有效地解决非线性问题,并且继承了感知机运算简单速度快的优点。
The experiments on some real datasets demonstrate that the proposed SKP can solve nonlinear classification efficiently . Moreover , it has the original advantage of simple calculation and fast speed .
-
关于单体模糊神经网络感知机收敛定理的讨论
On the Perceptron Convergence Theorem of the Monolithic Fuzzy Neural Networks
-
基于模糊均值聚类和感知机的网络银行客户挖掘
Internet Bank Customer Mining Based on Fuzzy c-means Clustering and Perceptron
-
层数对线性神经元感知机性能的影响
Influence of layers to performance of perceptron with linear activation function
-
基于多层感知机神经网络的智能高度传感器设计
Intelligent Altitude Sensor Based on Artificial Neural Networks Using Multilayer Perceptron
-
包含奇异类样本的感知机学习规则的单位圆算法
Unit Circle Algorithm of Perceptrons Study Rule with Oddity Sample
-
感知机神经网络模型构成一种通用非线性控制器
A Nonlinear Common Controller Based on Perception Model of Neural Network Computer
-
感知机只能解决线性可分问题。
The perceptron can only solve linearly separable problems .
-
简化的广义多层感知机模型及其学习算法
Simplified Generalized Multi-layer Perceptron Model and Its Learning Algorithm
-
一阶感知机平均记忆容量的界
The bounds of average memory capacity of first-order perceptrons
-
一种基于多层感知机的无监督异常检测方法
Unsupervised anomaly detection based on a multi-layer perceptron
-
利用多层感知机映射提高不匹配环境下的语音识别性能
Use the Multi-Layer Perceptron Mapping to Improve the Speech Recognition Performance under Unmatched Environments
-
感知机特别适用于简单的模式分类问题。比如线性可分问题。
Therefor , The perceptron is especially suitable for the simple pattern classification problem .
-
本文简述了图像代数以及它与数学形态神经网络的关系,并以此为基础建立了一个数学形态视觉感知机模型。
Image algebra and its relationship to morphological neural networks are discussed briefly in this paper .