禁带宽度

  • 网络Band Gap;energy gap
禁带宽度禁带宽度
  1. 复合体系的禁带宽度随着Ti与W摩尔比的增加而减小,但是不同的比例对复合体系的磁矩没有明显影响。

    The band gap are reduced with the increased molar ratio ofTi and W , but the different ratios have not effect on the magnetic moment .

  2. 但TiO2的禁带宽度较大,需要以紫外光为激发光源,限制了其实际应用。

    However , more practical applications have been limited by its wide band gap , which require ultraviolet light as the optical excitation source .

  3. 确定了声子的能量Ep与禁带宽度Eg的值。

    The phonon energy E , and the energy gap E , are ascertained .

  4. Fe掺杂后石墨烯禁带宽度为1.51ev,且有磁性产生。

    Fe-doped graphene owns the gap of 1.51 eV and existence of magnetism .

  5. 氧化镍是具有典型的3d电子结构的氧化物半导体,是一种p型半导体材料,禁带宽度是在3.6~4.0eV之间。

    NiO is a p-type semiconductor material with typical 3d electron structure oxide . Its band gap is between 3.6-4.0 eV .

  6. 激光器有源区材料的禁带宽度Eg。

    The forbidden band width Eg of QW LD active layer materials .

  7. ZnO材料无论是在晶格结构,晶格常数还是在禁带宽度上都与GaN很相似,对衬底没有苛刻的要求而且很易成膜,被认为是很有前途的光电子材料。

    The crystal structure and lattice constant of ZnO are similar to those of GaN .

  8. 首次利用Mn离子掺杂成功实现了ZnO薄膜的禁带宽度的调节。

    For the first time ion implantation using Mn had successfully realized the ZnO thin film energy gap adjustment .

  9. BN(n,0)纳米管的禁带宽度随着n的增大而增大,并收敛于5.39eV。

    The band-gaps of BN ( n , 0 ) nanotubes also increase with the increase of n and converge at 5.39 eV .

  10. 氨水浓度对CdS薄膜的光学性质也有很大的影响,随着氨水浓度的提高所得到的CdS薄膜的禁带宽度增大。

    The ammonia concentration has greatly influenced the optical properties and the band gap of CdS thin films .

  11. 就目前研究较多的TiO2系光催化剂而言,其较宽的禁带宽度和较低的量子效率仍然是限制其发展的主要原因。

    As far as the general TiO2 photocatalyst , the broad band gap and low quantum efficiency confine its development .

  12. 但是,禁带宽度、杂质模的带宽及Q值随着入射角的增加有明显变化。

    However , width of forbidden band , bandwidth and quality factor Q of impurity mode vary with the increase of incidence angles evidently .

  13. 本论文介绍了ZnO薄膜的特性及其应用,制备ZnO薄膜的工艺方法及其优缺点,以及ZnO薄膜电学性能,禁带宽度的调节等方面的研究进展。

    In this thesis , the preparation technology , property , application and researches on the electrical property and band gap project were introduced .

  14. 掺杂使TiO2的晶胞体积发生膨胀,晶粒尺寸、禁带宽度和内部阻抗减小。

    Doping ions into TiO2 can expand the cell volume and reduces the grain size , the band gap and the internal resistance .

  15. 我们得到的金刚石、硅、锗和BN的禁带宽度计算值与实验值吻合的很好。

    Good agreement with available experiments has been obtained for diamond , Si , Ge , and BN .

  16. 相对于CdS,拥有更窄禁带宽度的CdSe和CdTe具有更宽的光吸收范围。

    Compared with CdS , CdSe and CdTe have wider absorption range due to the narrower band gap .

  17. UV-Vis显示,Ho发生稍微的蓝移,蓝移不明显,禁带宽度增大不多。

    UV-Vis show , Ho has moved slightly blue , blue-shift is not obvious , not much band width increases .

  18. 由于ZnO纳米材料较宽的禁带宽度使其对太阳光的利用率大大减小,以致于严重阻碍了其在光催化领域的广泛应用。

    The wide band gap of ZnO reduced the range of sunlight response on ZnO and seriously hindered its wide spread application in the field of photocatalysis .

  19. 稀土Gd的掺杂使纳米ZnO出现不同程度的红移,样品禁带宽度缩小,利于吸收较长波长的光进行光催化。

    Gd doped Nano-ZnO powed have varying degrees of redshift , sample band width are narrow , which absorbs longer wavelength light in photocatalytic .

  20. 通过对该曲线的研究,发现铌酸钙钡晶体吸收边以下对应的跃迁为间接跃迁,计算出间接跃迁的禁带宽度Eg以及声子能量EP。

    Furthermore , the bandgap width Eg for the indirect transition and the phonon energy Ep are calculated by using this curve respectively .

  21. TiO2与ZnFe2O4薄膜禁带宽度测定及对光催化效率的影响

    Measurement of TiO_2 and ZnFe_2O_ 4 films ' Energy-gap and its Effect on Photocatalytic Efficiency

  22. 随着射频电源功率的增加,CrO薄膜的禁带宽度逐渐下降。

    The band gap of CrO films was decreased with increasing RF power .

  23. 透射光谱结果显示载玻片上生长的ZnO薄膜在可见光波段的透射率达到77~87%,薄膜的禁带宽度与ZnO体材料禁带宽度基本相等。

    The optical transmittance spectra of the films showed a transmission between 77 and 87 % in the visible light region and the bandgaps were basically equal to bulk ZnO .

  24. 透射光谱表明薄膜的禁带宽度为328eV,与ZnO体材料的禁带宽度330eV基本相同。

    Optical transmittance spectrum of the ZnO films indicated that the band-gap of the thin films was 3 ^ 28eV , nearly the same as that of ZnO bulk crystal .

  25. 利用无机分子在紫外的吸收和较宽的禁带宽度,分别研究了TiO2、ZnO纳米修饰层对聚合物太阳能电池吸收特性以及光伏性能的影响。

    The influence of the nano-particles of TiO2 and ZnO to the absorbing characteristics and the photovoltaic performance of these polymer solar cells with modified layer were investigated respectively .

  26. Fe膜硫化的FeS2薄膜平整致密,晶粒较大,光吸收系数较高,禁带宽度接近理论值。

    The FeS_2 films evolved from the precursory Fe films show smooth surface , coarse grains , high optical absorption coefficient and approximately normal band gap .

  27. 因为可通过元素掺杂调节ZnO的禁带宽度,使其在3.3eV到4.5eV之间变化,所以还可以制成蓝光、绿光、紫光等发光器件。

    As its band gap can be changed from 3.3 eV to 4.5 eV through doping , ZnO can be made into blue , green , purple and other light-emitting devices .

  28. Mg掺杂ZnO能使纳米材料的禁带宽度在3.37~7.78eV之间连续可调,可制得覆盖从蓝光到紫外光谱区域半导体激光器。

    The band gap of Mg doped ZnO nano-materials can be continuously adjustable between 3.37 ~ 7.78 eV , and can be obtained from the blue to ultraviolet spectrum covering areas of semiconductor lasers .

  29. 理论上分析了光电导开关对于不同波长的光吸收机制,重点讨论了光子能量小于GaAs禁带宽度的激光触发开关的非本征光吸收。

    Different wavelengths of light absorption mechanism were analyzed theoretically about PCSS with emphases on the optical absorption of which the photon energy is less than that of GaAs bandgap .

  30. 紫外可见漫反射光谱(UV-Vis)表明,该纳米晶禁带宽度为1.77eV,具有优良的半导体性能。

    Their semiconducting property was investigated by UV-Vis , and the result indicated that this nanocrystalline is a preferable semiconductor with a band gap of 1.77 eV .