内接三角形

  • 网络Inscribed triangle
内接三角形内接三角形
  1. 推广了经典的圆内接三角形面积最大值问题。

    Classical maximum area of inscribed triangle is extended in this paper .

  2. 运用分析的方法给出了圆内接三角形定周长的面积最大的三角形为等腰三角形,并且给出了周长和面积最大值的不等式关系。

    It is obtained that the inscribed triangle with constant perimeter is isosceles when using mathematical analysis to maximize its area . Besides , an inequality of the maximum of area and perimeter is established , i.

  3. 仿射性质求椭圆内接三角形的最大面积

    Application of Affine Nature in the Demand of Maximum Area of Inscribed Triangle Within the Ellipse

  4. 椭圆内接定边长三角形的面积最大值

    Maximum of Triangle Area with Fixed Length of One Side Inscribed in a Circle

  5. 利用数学分析结合解析几何的方法,解决了椭圆内接定边长三角形的面积最大值的问题。

    By using the methods of mathematical analysis and analytic geometry , the maximum of triangle area with a fixed side inscribed in a circle is discussed .

  6. 圆内接与外切三角形中的某些极值问题

    Some Extreme Value Problems for Inscribed and Circumscribed Triangles in a Circle

  7. 像是镌刻在大理石上的等边三角形。三角形中有一个内接圆;圆和三角形都被竖直等分。

    Equilateral triangle that appears to be carved into marble . The triangle contains a circle ; both are bisected vertically .